Профессиональный язык учителя математики

Арендный блок

1. Профессиональный русский язык - разновидность общенационального языка, ограниченная в употреблении рамками специальной профессиональной сферы, соответственно и определенной научной сферы. В русском языке, как и в любом другом языке, есть множество лексических единиц, которые используются только специалистами и не известны широкому кругу людей.В языке математиков: область определения функции, производная,  синус, косинус, тригонометрическая функция и др.Профессиональный язык по-другому можно назвать языком для специальных целей. Специфика профессионального языка проявляется прежде всего в лексико- фразеологическом  строе, реже – в грамматическом  строе языка, в жанрах письменной и устной речи, в сфере применения. Например, математику важно знать не только математические термины, но и образцы  текстов решения задач и примеров, тексты доказательств теорем

Профессиональный язык позволяет сформировать профессиональные компетенции у будущего специалиста, войти в предметную область специальности, ориентироваться в специальных текстах на русском языке, строить монологические высказывания профессионального содержания и т.д.  Содержание дисциплины "Профессиональный русский язык" направлено на формирование лингвопрофессиональной компетентности, интегрирующей общекультурные, интеллектуальные, социальные и профессиональные качества специалиста. Профессиональный язык отражает черты различных функциональных стилей: научного, официально- делового, разговорного.

 2. 

Нормы литературного языка

3.

Правильность речи

.

4.

Профессиональный язык учителя математики

5. 

Речевое мастерство

6. Качественной речью мы называем:

а)  речь, в которой нет ошибок; б)  речь, которая соответствует ситуации; в)  речь, которую понимают слушатели.

качественная речь имеет разные  свойства:

- нормативные (правильность);

- коммуникативные (соответствие ситуации, понятность)

- этические (вежливость).

Качественная речь должна быть понятна слушателям.

Поэтому нельзя использовать специальные термины, если ваши слушатели не являются специалистами в данном вопросе. Также нельзя использовать сложные, редкие слова, если ваши слушатели – дети или иностранцы, которые ещё плохо знают язык. Коммуникативные свойства речи – это её соответствие ситуации и понятность.

Всегда, в любой ситуации, ваша речь должна быть вежливой.

Это значит, что надо уметь правильно:

 - выбрать ТЫ- или ВЫ-обращение,

-  использовать этикетные формулы,

-  выразить уважение к собеседнику.

В этом проявляются этические свойства качественной речи. Можно сделать такой вывод: средства русского национального языка делятся на правильные, соответствующие представлению о  хорошей речи, и неправильные, не соответствующие такому представлению.

Правильность речи Правильная речь – речь, в которой соблюдаются все нормы современного литературного языка. Норма литературного языка – закрепившийся, общепринятый в языковом коллективе вариант произношения, грамматики и словоупотребления. Понятие нормы включает правила: ударения, произношения, образования слов и их грамматических форм, сочетаемости слов и объединения их в словосочетания и предложения, написания слов и постановки знаков препинания, употребления слов и устойчивых сочетаний.

8.Точность речи Точность речи Точная речь – речь, в которой адекватно отражается действительность и однозначно обозначено словом то, что должно быть сказано. Главное условие точной речи – хорошее знание предмета речи. Точность в выборе слова предполагает различение дополнительных стилистических значений, умение выбрать слово из синонимического ряда, исключить многозначность, разграничить паронимы (эффектный – эффективный), применять правила лексической сочетаемости слов. Непродуманное сочетание слов делает речь неточной: «Молодые люди вольно или невольно сваливают под один ярлык сомнительные ценности».

9. Выразительностью речи Выразительность речи Выразительная речь – речь, свойства, особенности, структура которой вызывают и поддерживают внимание и интерес слушателей. Условия выразительной речи: 1. Самостоятельность, творческий характер мышления. 2. Психологическая установка говорящего. 3. Хорошее знание языка, его стилистических ресурсов, выразительных возможностей. Выразительные средства речи – тропы и фигуры речи.

Тропы: метафора, сравнение, эпитет. Метафора – троп, состоящий в перенесении значения с одного предмета (или явления) на другой на основе сходства. Структура метафоры включает следующие элементы: 1) два сравниваемых предмета (или явления); 2) признак, по которому они сопоставляются. Сравнение – троп, основанный на сопоставлении одного явления или предмета с другими (Лес словно терем расписной …) Эпитет – троп, определяющий предмет или действие, подчеркивающий в них какое-либо характерное свойство, качество. (Мужественный полководец, бесстрашный воин).

10. Доклад. Лобачевский Николай Иванович (1792—1856), математик, создатель неевклидовой геометрии.

Родился 1 декабря 1792 г. в Нижнем Новгороде. Отец умер, когда мальчику исполнилось семь лет, и мать вместе с тремя сыновьями переехала в Казань.

Лобачевский окончил Казанский университет. В 1814 г. он приступил к чтению лекций по теории чисел, а в 1827 г., уже будучи профессором, был избран в ректоры и занимал эту должность в течение 19 лет.

Громкая слава Лобачевского основана на его геометрических изысканиях. К 1826 г. он определил разработанную им систему как «воображаемую геометрию» в отличие от «употребительной», евклидовой.

Открытие Лобачевского было впервые сжато изложено в феврале 1826 г. на заседании отделения физико-математических наук и затем представлено в статье «Новые начала геометрии с полной теорией параллельных» («Учёные записки Казанского университета», 1835 г.).

Европейские учёные узнали о работах Лобачевского лишь в 1840 г., и уже в 1842 г. он был избран членом-корреспондентом Гёттингенского научного общества.

Лобачевскому принадлежит также ряд работ по математическому анализу. Он дал общее определение функциональной зависимости. В алгебре известен его метод приближённого решения уравнений любой степени; учёный первым в России опубликовал курс высшей алгебры.

В Казанском университете Лобачевский читал лекции по астрономии и проводил астрономические наблюдения. Благодаря его энтузиазму при университете была построена новая обсерватория, одна из лучших по тому времени. Она начала работать в 1838 г., на год раньше Пулковской (ныне Главная астрономическая обсерватория РАН, близ Петербурга).

Скончался 24 февраля 1856 г. в Казани.

В 1883—1886 гг. Казанский университет издал «Полное собрание сочинений по геометрии Лобачевского». В 1893 г. в честь столетия со дня рождения Лобачевского ему воздвигли памятник в Казани на собранные по международной подписке средства. В 1895 г. Казанское физико-математическое общество учредило премию имени Лобачевского за выдающиеся работы в области геометрии. Эту награду поныне присуждает Российская академия наук.

11. Богатство речи — это максимально возможное насыщение её разными, не повторяющимися средствами языка, необходимыми для выражения содержательной информации. Богатство речи Богатство речи каждого человека определяется тем, как он использует богатство языка. Аспекты богатства речи: лексический, семантический, синтаксический. Богатство речи напрямую связано с уровнем общей культуры, эрудицией, начитанностью. Богатой, разнообразной речи противостоят штампы (механические повторы стереотипных, шаблонных словосочетаний или высказываний).

12. Чистота речи Чистая речь – речь, в которой нет чуждых литературному языку элементов. Засоряют речь слова-сорняки, вульгаризмы, жаргонизмы. Употребление диалектизмов противоречит требованиям чистоты речи. Вызывает затруднение в восприятии речи неоправданное употребление заимствованных слов.

Чистота речи - это отсутствие в ней лишних слов, слов-сорняков, нелитературных слов (жаргонных, диалектных, нецензурных). Чистота речи — отсутствие в ней лишних слов, слов-сорняков, слов-паразитов. Конечно, в языке названных слов нет, такими они становятся в речи говорящего из-за частого, неуместного их употребления. Слова-сорняки, слова-паразиты не несут никакой смысловой нагрузки, не обладают информативностью. Они просто засоряют речь говорящего. Затрудняют ее восприятие, отвлекают внимание от содержания высказывания. Чистота речи достигается на основе знания человеком стилистической характеристики употребляемых слов, продуманности речи и умения избегать многословия, повторов и слов-сорняков (значит, так сказать, так, собственно говоря, как бы, типа).

13. Логичность речи - это логическая соотнесенность высказываний друг с другом. Логичность достигается благодаря внимательному отношению к целому тексту, связности мыслей и ясному композиционному замыслу текста. Логические ошибки можно устранить при прочтении готового письменного текста, в устной речи необходимо хорошо помнить сказанное и последовательно развивать мысль. 

Логичность речи — это качество речи, которое должно быть ей присуще обязательно, а если логичность соблюдена во всем, то она становится одним из важнейших достоинств речи.

Основные определения логичности речи подчеркивают, что речь можно назвать логичной, когда она соответствует законам логики. Тем самым признается, что для создания логичной речи и для ее оценки с этой точки зрения необходимо в первую очередь знать логику как науку. В то же время необходимо учитывать, что, помимо логики мысли (которую изучает логика как наука), есть еще логика действительности (например, последовательность и причинно-следственная связь событий и явлений), также существенно влияющая на логичность речи. Плюс к этому есть еще логика текста, анализ которой во многом связан с анализом его структуры. И есть логика восприятия этого текста. Таким образом, получается, что логичной мы можем назвать только такую речь, которая соответствует всем этим направлениям и проявлениям логики. Это не всегда достижимо, тем более что в конкретном тексте последовательность событий и последовательность их изложения иногда не совпадают.

14.

Характеристика содержания предметной области математика

15. Планирование карерьы. Представим ситуацию: (идет повествование и параллельно преподаватель зарисовывает схему) выпускники юрфака желают устроиться на работу. Если рассматривать их с позиции профессиональной подготовленности, то они все равны, стоят на нулевом уровне( раннее не работали, учились на дневном отделении). Как мы видим, в профессионализме все примерно равны, разница между кандидатами лишь в личной характеристике, которая складывается из внешности и внутреннего мира. Незнакомый человек созерцает тебя внешне, поэтому немаловажно как ты будешь выглядеть перед работодателем. Вспомним расхожую фразу: "Встречают по одежке, провожают по уму"

1. Внешний вид

Как по-вашему должен быть одет кандидат?! Как обычно мы представляем стандартный набор одежды для делового человека, но надо сделать акцент на том, что свой внешний вид нужно приспособить к принятому на фирме тону. Например. Деловой костюм будет неуместен, если вы собираетесь в общество художников. Исходя из примера, можно сделать вывод, что внешний вид превращается в первый визуальный фактор, влияющий на впечатление о вас. Одежда не должна быть слишком броской, чтоб не отвлекала от объективной оценки его личности. Не должно быть излишеств, небрежности. Кандидату не следует отказываться от своего персонального стиля.

Не допустимо: ювелирные украшения, значки, пропагандирующие политических кандидатов или определенную идею. Если вы курите или в больших количествах употребляете кофе, захватите с собой мятные освежающие таблетки.

2. Мимика и жесты

Первое впечатление зависит от вашего внешнего вида; следующим моментом, на который вы должны обратить внимание, является то, как вы появитесь в кабинете и как поприветствуете интервьюера. Например, рукопожатие должно быть уверенным, крепким. Обратите внимание на то, что многие интервьюеры склонны уделять значительное внимание невербальным знакам: позам, жестам, мимике, движению глаз. Для доказательства можно привести конкретные цифры (процент влияния жестов и мимики на успешность беседы).

55% успеха обеспечивает выражение лица собеседника;

38% успеха определяется манерой вести беседу;

7% успеха зависит от содержания того, о чем он говорит.

Физический язык" - жесты согласия и несогласия

Согласие

Несогласие

Уменьшение дистанции между собеседниками

Дистанция

Увеличение дистанции между собеседниками

Обращение к собеседнику с помощью взгляда; небольшой наклон головы в сторону( проявление интереса)

Голова

Отклонение головы; поднятие ее вверх; наклон головы в низ

Наклон вперед ( проявление заинтересованности, оказание доверия собеседнику)

Корпус

Наклон назад ( нежелание дальше выслушивать собеседника, стремление сказать что-то самому, агрессивность в ходе беседы)

Направлены на партнера и открыты

Руки

Держаться за стул; сомкнуты одна в другую

Тон разговора сдержанный ; допрос

Голос

Тон чрезмерно акцентуированный

3. Речевой этикет.

Вы хорошо оделись, красиво зашли в кабинет и вдруг:"здорово, братаны!"или дрожащим голосом:"Очень рад приветствовать вас!"

Проигрыш 50%.Чтобы этого не случилось, необходимо соблюдать речевой этикет, который проявляется в следующем:

1.Говорите в естественном размеренном темпе - достаточно неторопливо, чтобы быть понятым и успеть донести до собеседника желаемый смысл, и вместе с тем не настолько медленно, чтобы слушатель начал клевать носом!

2.Речь должна звучать убедительно и авторитетно.

3 Избегайте жаргонных слов, слов-пустышек.

4.Формулируйте свои мысли конкретно, четко, сжато.

5.Тон должен оставаться деловым, избегайте уменьшительно-ласкательные прилагательные.

16. Норма ударения. Словесное ударение является обязательным признаком слова. Слово опознаётся лишь при определенной постановке ударения.

Ударение в русском языке свободное. Оно может быть на любом слоге слова. В пределах одного и того же слова ударение может передвигаться с одного слога на другой, например: понять, по'нял, поняла'.

Во многих случаях словесное ударение служит признаком, по которому различаются значения слов, например: а'тлас и атл'ас, за'мок и замо'к, му'ка и мука'.

Разноместность ударения в русском языке даёт возможность разграничивать грамматические формы как одного и того же слова, так и двух разных слов, например: сте'ны и cтены', ру'ки и руки', по'лка и полка', сто'ит и стои'т.

В некоторых словах русского языка ударение ставится то на одном, то на другом слоге. Оба варианта являются правильными, например: творо'г и тво'рог, ина'че и и'наче, мышле'ние и мы'шление, ке'та и кета', одновре'менно и одновреме'нно.

Особенно разнообразно, а поэтому очень трудно для изучения словесное ударение имён существительных. Немало споров вызывают слова догово'р и догово'р, которые многими произносятся как до'говор и при'говор. Правильно произносить следует догово'р и пригово'р, как разгово'р и уговор. Иногда ударение меняет значение слова: призывно'й (призывно'й возраст) и призы'вный (призы'вный клич), мелочно'и (товар), ме'лочный (человек).

Бывают случаи, когда ударение меняется с течением времени: так, при Пушкине говорили музы'ка, а не му'зыка. Вспомним: Гремит музы'ка боевая.

Это объясняется происхождением слова музыка от франц. music с ударением на последнем слоге. Как только это слово «обрусело», оно потеряло французское ударение.

Многие иноязычные слова и в настоящее время в разговорной речи произносятся с неверным ударением. Например, ква'ртал, а'тлет, про'цент, па'ртер, а'мпер, жа'люзи, медика'менты, ко'клюш можно услышать в речи вместо правильных кварта'л, атле'т, проце'нт, парте'р, ампе'р, жалюзи, медикаме'нты, коклю'ш.

Можно предположить, что все приведённые слова иностранного происхождения, и поэтому их правильное произношение объясняется незнанием иностранного языка. Но почему же так часто встречается ошибочное ударение в исконно русских словах? Нередко говорят: средства' (вместо сре'дства}, свекла' (вместо свёкла), сто'ляр (вместо столяр), танцовщи'ца (вместо танцо'вщица), на'чать (вместо начать), тесно' (вместо те'сно) и т. п. ие

Часто неверно говорят кило'метр, по при этом никто не говорит килограмм, хотя в речевой практике встречается сокращение кило'. Здесь «французская» манера произношения (ударение на последнем слоге) вполне уместна, так как метрическая система была впервые введена во Франции.

17. общая характеристика спора. Спор – акт речевой коммуникации, однако не всякий коммуникативный процесс является спором. Зафиксируем сущность спора посредством логической операции определения. Спор – это коммуникативный процесс, в рамках которого происходит сопоставление точек зрения, позиций участвующих в нем сторон, при этом каждая из них стремится аргументированно утвердить свое понимание обсуждаемых вопросов и опровергнуть доводы другой стороны. Редкий спор заканчивается безусловной победой одной из сторон, но это не умаляет ценность данного коммуникативного акта. Во-первых, поскольку в споре соревнуются идеи, то его участники обогащаются идейно: обмен идеями, в отличие от обмена вещами, более эффективен. Б. Шоу так обосновывал этот тезис: если у вас есть одно яблоко и у меня одно, то при обмене ими и у вас, и у меня останется по одному яблоку; но если у вас есть одна идея, а у меня другая и мы обмениваемся ими, то в результате у каждого из рас будет по две идеи. Во-вторых, осуществив процесс спора, стороны приходят к более глубокому уяснению как своей собственной позиции, так и позиции своего оппонента. В-третьих, в споре можно узнать нечто новое и тем самым дополнить свой багаж знаний и расширить кругозор. Искусство ведения спора получило название эристика. Эристика является интегральным искусством, возникающим на стыке знаний и умений, вырабатываемых логикой, психологией, этикой и риторикой. При таком подходе искусство спора характеризуется двумя основными признаками: доказательностью и убедительностью. Доказательность – это логическое воздействие на оппонента принудительностью рассуждения. Убедительность – это психологическое воздействие на оппонента, направленное на восприятие им той или иной идеи. В рамках спора доказательность и убедительность относительно независимы. Возможны следующих их комбинации:

а) доказательно и убедительно;

б) доказательно, но не убедительно;

в) не доказательно, но убедительно;

г) и не доказательно, и не убедительно

. Идеальный вариант, к которому необходимо стремиться в любом споре, – доказательность и убедительность рассуждений одновременно. За более чем двухтысячелетнюю историю своего существования эристика выработала общие рекомендации, выполнение которых способствует повышению плодотворности спора: • Если есть возможность достичь согласия без спора, лучше ею воспользоваться. • Не спорьте по мелочам; если уж спорить, то только по принципиальным вопросам. • Почву для спора образует наличие несовместимых позиций относительно одного и того же предмета; если же позиции совместимы, нужда в споре отпадает. • Спор должен быть предметным, а предмет спора – достаточно ясным и неизменным на всем его протяжении. • Спор возможен только при наличии определенной общности исходных позиций, которая способна стать источником начального взаимопонимания спорящих, а также известной суммы знаний о предмете спора. • Спор предполагает следование определенным законам и правилам логики, этики и психологии. • Спор не должен быть самоцелью, в споре недопустимы выпады личного характера; помните, что спор должен быть средством достижения истины, выработки оптимального решения. 

18.

Выступление как разновидность ораторской речи

.

19.

Универсальные понятия и термины математической наукой

.

20.

Термины и понятия по теме введение в математический анализ

.

21.

Языковые особенности устной речи обращение приветствие

.

2.

Этика речевого общения и этикетные формулы речи

§ 2.1. Приветствие. Обращение

Приветствие и обращение задают тон всему разговору. В зависимости от социальной роли собеседников, степени близости их выбирается ты-общение или вы-общение и соответственно приветствия здравствуй или здравствуйте, добрый день, привет, салют, приветствую и т. п. Важную роль играет также ситуация общения.

Обращение выполняет контактоустанавливаюшую функцию, является средством интимизации, поэтому на протяжении всей речевой ситуации обращение следует произносить неоднократно; это свидетельствует и о добрых чувствах к собеседнику, и о внимании к его словам.

Национальные и культурные традиции предписывают определенные формы обращения к незнакомым людям. Если в начале века универсальными способами обращения были гражданин и гражданка, то во второй половине XX века большое распространение получили диалектные южные формы обращения по признаку пола - женщина, мужчина. 7

В последнее время нередко в непринужденной разговорной речи, при обращении к незнакомой женщине употребляется слово дама, однако при обращении к мужчине слово господин используется только в официальной, полуофициальной, клубной обстановке. Выработка одинаково приемлемого обращения к мужчине и к женщине - дело будущего: здесь скажут свое слово социокультурные нормы.

22.

Языковые особенности письменной речи

.

23.

Дифференциальное исчисление функций нескольких переменных

24. Понятия и фразеологизм по разделу алгебра и теория чисел.

Теория чисел, или высшая арифметика — раздел математики, изучающий целые числа и сходные объекты. В теории чисел в широком смысле рассматриваются какалгебраические, так и трансцендентные числа, а также функции различного происхождения, которые связаны с арифметикой целых чисел и их обобщений.

В исследованиях по теории чисел, наряду с элементарными и алгебраическими методами, применяются геометрические и аналитические методы, а также методы теории вероятностей

В алгебраической теории чисел понятие числа расширяется, в качестве алгебраических чисел рассматривают корни многочленов с рациональными коэффициентами. При этом аналогом целых чисел выступают целые алгебраические числа, то есть корни унитарных многочленов с целыми коэффициентами. В отличие от целых чисел в кольце целых алгебраических чисел не обязательно выполняется свойство  HYPERLINK "https://ru.wikipedia.org/wiki/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D0%B5_%D0%BA%D0%BE%D0%BB%D1%8C%D1%86%D0%BE" \o "Факториальное кольцо" факториальности, то есть единственности разложения на простые множители.

25. Требования к оформлению реквизитов документов анкета и резюме. Анкета

Анкета (фр. еnquete -- расследование) -- опросный лист, самостоятельно заполняемый опрашиваемым по указанным в нем правилам. Несмотря на то, что она является одним из основных документов личного дела, утвержденной формы анкеты не существует. Это всегда собственная разработка компании, и в зависимости от того, какому подразделению нужна информация (службе кадров, юридической службе, др.) задающими генеральное направление выступают специалисты этих структурных единиц (кадровики, юристы, др.).

Данный документ является обобщающим и содержит все сведения о соискателе. Анкета заполняется от руки, без помарок и исправлений.

Правильность изложенных в личном листке сведений проверяются по представленным документам. Соискатель подписывает заполненный листок и ставит дату.

Использование грамотно составленной анкеты открывает перед заинтересованными работниками дополнительные возможности.

1. Для инспектора по кадрам важным являются удобство использования; полнота информации, собранной в одном источнике; исключение дублирования информации в различных документах. При возникновении какого-либо вопроса, нет необходимости «поднимать» все документы личного дела. При желании анкету можно разработать таким образом, чтобы в ней указывалась вся информация, которая может понадобиться при оформлении нового сотрудника. В этом случае она служит неким справочным материалом.

2. Для руководителя и менеджера по персоналу анкета является источником дополнительной информации о соискателе, а следовательно, основой для более адекватной его оценки.

3. Для соискателя предложенная к заполнению анкета -- это своего рода «первое знакомство» с предприятием. Проанализировав ее содержание, внимательный кандидат может сделать некоторые выводы о корпоративной культуре, требованиях и особенностях работы фирмы.[4]

Официально утвержденной формы личного листка не имеется. Каждая организация сама определяет необходимый перечень сведений о соискателе. Но можно выделить основные группы вопросов, содержащиеся в анкете. К ним относятся:

1. Общая информация. Ее можно получить посредством вопросов о правовом (имя, место жительства, пр.) и социальном статусе потенциального работника, условиях его жизни, способах контакта с ним (номер телефона, пейджера, адрес, е-mail и т.д.).

2. Информация о перспективах работы компании. Правильно подобранные вопросы позволят первоначально озвучить цели, мотивы, профессиональные притязания кандидата. Сопоставляя информацию этого и предшествующего раздела, можно прогнозировать перспективы работы сотрудника в компании, определить адекватность оценки соискателем самого себя, своих желаний и амбиций.

3. Информация об образовании и опыте работы.

4. Информация о профессиональных навыках.

5. Информация о рекомендациях.

Резюме (от фр. résumé или лат. curriculum vitae — «течение жизни», жизнеописание, произносится кури́кулюм ви́тэ, часто сокращают до CV) — документ, содержащий информацию о навыках, опыте работы, образовании и другую относящуюся к делу информацию, обычно требуемую при рассмотрении кандидатуры человека для найма на работу.

Жизнеописание, то есть CV, отличается от резюме объёмом и, как правило, пишется кандидатами на высокие посты. В нём даётся более подробная, чем в резюме, информация о себе, своём образовании и квалификации.

26.

Связь профиссионального математического русского языка с дисциплинами специальности

.

27. Аннота́ция (от лат. annotatio — замечание) или резюме (от фр. résumé — «сокращённый») — краткое содержание книги или другого издания, а также краткая характеристика издания: рукописи, монографии, статьи или книги. Аннотация показывает отличительные особенности и достоинства издаваемого произведения. Даёт ответ на вопрос: «О чём говорится в первичном документе?» Помогает читателям сориентироваться в их выборе.

Перед текстом аннотации присутствуют выходные данные (автор, название, место и время издания) в номинативной форме.

Аннотация содержит основную тему статьи или книги, кроме этого она может перечислять (называть) основные положения описываемого источника.

Аннотация может не упоминать субъект действия (предполагая, что он известен из контекста), и содержать пассивные конструкции — глагольные и причастные.

Может присутствовать в статье. В современных научных журналах аннотацию, как правило, ставят в начале статьи (сразу после заголовка, авторов и списка ключевых слов), несмотря на то, что в ней могут содержаться выводы.

В англоязычной литературе аннотация часто выделяется заголовком «Abstract».

28. теория и методика обучения математики. Лекция 1. Предмет методики преподавания математики: Теоретические основы обучения математике

Методика в переводе с греческого «путь». При изучении данной дисциплины необходимы рассмотрения ответов на самые важные вопросы:

Зачем изучать математику?

Кого обучать математики? (учет возрастных, интеллектуальных особенностей обучаемых).

Как обучать математики? (различные методы и способы обучения математики).

Какого содержание изучаемого вопроса? (сама по себе наука обширная, отбор необходимого материала из научной математики для обучения школьных программ)

Сам предмет методика преподавания математики состоит из 2-х частей: общая и частная методика.

В общей методике рассматриваются конкретные факты с учетом специфики математики как учебного предмета. Называемое общее дано не так как она основывается на психолого-педагогических аспектах.

Частная методика представляет собой применение общей методики к изучению конкретных тем школьного курса математики.

МПМ - это наука о математики как о научном предмете и закономерностях обучения математике учащихся различных возрастных групп, в своих исследованиях данная наука опирается на различные психолого-педагогические, математические основы и обобщения практического опыта работы учителей математиков.

Д/з «История возникновения МПМ» (конспект)

-Учебники нового поколения - в переходный период

-Учебники нового поколения- при 12 летнем обучении

Связь с другими науками.

С физикой, химией, педагогикой, психологией, философией и другими науками.

Цели обучения математики в вузах.

Выпускники вузов по завершению курса МПМ должны усвоить следующие аспекты:

развитие логического мышления и умения решать задачи различных видов (общая культурная роль МПМ)

развитие прикладного математического мышления учащихся (представление о роли математики в науке и практике, иметь элементарное представление и навыки применения математики).

Содержание школьного курса математики.

Школьные программы и учебники постоянно изменяются. Первые изменения в школьных программах произошли в 1965 году. ( Калмагулов, Акумевич – комиссия).

В основу программы были заложены 4 ступени образования ( 1-3 классы, 4-5 классы, 6-8 классы, 9-10 классы).

В этот период были введены новые термины множества и его элементы, высказывания и предложения с переменными, подмножества, объединение и пересечение множеств. (с 1-5 класс) Элемент арифметического понятия и начальные сведения из геометрии, понятие отрицательного числа, понятие числа в буквенной символике и решение уравнений (6-8 класс) курс алгебры, 9-10 класс курс алгебры и начала анализа.

Особенностью данного проекта было усиления внимания к обобщенным идеям ( число, геометрические преобразования)

После обработки данная программа была облегчена и переработана в 1985 году ( трех ступенчатая 1-4 класс, 5-9 класс, 10-11 класс).

Дидактические функции.

В основе технологии обучения лежит методологическая система значения включает следующих 5 компонентов:

1) содержание обучения

2) цели обучения.

3) средства

4) форма

5) методы

Дидактические принципы подразделяются на общие и основные.

При рассмотрении дидактических принципов основные положения определяют содержания организационных форм и методов учебной работы школы. В соответствии с целями воспитания и закономерностей процесса обучения.

Дидактические принципы выражают то общее, что присуще любому учебному предмету и являются ориентиром планирования организации и анализа практического задания.

В методической литературе нет единого подхода выделении систем принципа:

А.Столяр выделяет следующие принципы:

1) научность

2) содержательность

3) наглядность

4) активность

5) прочность

6) индивидуальный подход

Ю.К. Бабанский выделяет 5 групп принципов:

1) направлена на отбор содержания обучения

2) на отбор задачи обучения

3) на отбор формы обучения

4) выбор методов обучения

5) анализ результатов

В основу развития современного образования заложен принцип непрерывного обучения.

Принципы обучения не являются раз и навсегда установленные, они углубляются и изменяются.

Принцип научности, как дидактический принцип, сформулирован Н.Н. Скаткиным в 1950 году. Особенностью принципа:

отображает, но не воспроизводит точности системы науки, сохраняя по возможности общие черты присущую им логику, этапность и систему знаний.

Опора к последующим знаниям на предыдущие.

Системная закономерность расположения материала по годам обучения в соответствии с возрастными особенностями и возрастом обучаемых, а также дальнейшие развитии обучающих.

Раскрытие внутренних связей между понятиями закономерностями и связи с другими науками.

В переработанных программах были особо выделены принципы наглядности.

Принцип наглядности обеспечивает переход от живого созерцания пр- венному мышлению. Наглядность делает более доступным, конкретным и интересным, развивает наблюдательность и мышление, обеспечивает связь между конкретным и абстрактным, способствует развитию абстрактного мышления.

Чрезмерное употребление наглядности может привести к нежелательным результатам.

Виды наглядности:

натуральный (модели, раздаточный материал)

изобразительная наглядность (рисунки, фото и т.д)

символическая наглядность (схемы, таблицы, чертежи, диаграммы)

29. Дефиниции по теме предмет теории и методики обучения математике цели принцип содержание.

Предмет методики преподавания математики: Теоретические основы обучения математике

Методика в переводе с греческого «путь». При изучении данной дисциплины необходимы рассмотрения ответов на самые важные вопросы:

Зачем изучать математику?

Кого обучать математики? (учет возрастных, интеллектуальных особенностей обучаемых).

Как обучать математики? (различные методы и способы обучения математики).

Какого содержание изучаемого вопроса? (сама по себе наука обширная, отбор необходимого материала из научной математики для обучения школьных программ)

Сам предмет методика преподавания математики состоит из 2-х частей: общая и частная методика.

В общей методике рассматриваются конкретные факты с учетом специфики математики как учебного предмета. Называемое общее дано не так как она основывается на психолого-педагогических аспектах.

Частная методика представляет собой применение общей методики к изучению конкретных тем школьного курса математики.

МПМ - это наука о математики как о научном предмете и закономерностях обучения математике учащихся различных возрастных групп, в своих исследованиях данная наука опирается на различные психолого-педагогические, математические основы и обобщения практического опыта работы учителей математиков.

Д/з «История возникновения МПМ» (конспект)

-Учебники нового поколения - в переходный период

-Учебники нового поколения- при 12 летнем обучении

Связь с другими науками.

С физикой, химией, педагогикой, психологией, философией и другими науками.

Цели обучения математики в вузах.

Выпускники вузов по завершению курса МПМ должны усвоить следующие аспекты:

развитие логического мышления и умения решать задачи различных видов (общая культурная роль МПМ)

развитие прикладного математического мышления учащихся (представление о роли математики в науке и практике, иметь элементарное представление и навыки применения математики).

Содержание школьного курса математики.

Школьные программы и учебники постоянно изменяются. Первые изменения в школьных программах произошли в 1965 году. ( Калмагулов, Акумевич – комиссия).

В основу программы были заложены 4 ступени образования ( 1-3 классы, 4-5 классы, 6-8 классы, 9-10 классы).

В этот период были введены новые термины множества и его элементы, высказывания и предложения с переменными, подмножества, объединение и пересечение множеств. (с 1-5 класс) Элемент арифметического понятия и начальные сведения из геометрии, понятие отрицательного числа, понятие числа в буквенной символике и решение уравнений (6-8 класс) курс алгебры, 9-10 класс курс алгебры и начала анализа.

Особенностью данного проекта было усиления внимания к обобщенным идеям ( число, геометрические преобразования)

После обработки данная программа была облегчена и переработана в 1985 году ( трех ступенчатая 1-4 класс, 5-9 класс, 10-11 класс).

Дидактические функции.

В основе технологии обучения лежит методологическая система значения включает следующих 5 компонентов:

1) содержание обучения

2) цели обучения.

3) средства

4) форма

5) методы

Дидактические принципы подразделяются на общие и основные.

При рассмотрении дидактических принципов основные положения определяют содержания организационных форм и методов учебной работы школы. В соответствии с целями воспитания и закономерностей процесса обучения.

Дидактические принципы выражают то общее, что присуще любому учебному предмету и являются ориентиром планирования организации и анализа практического задания.

В методической литературе нет единого подхода выделении систем принципа:

А.Столяр выделяет следующие принципы:

1) научность

2) содержательность

3) наглядность

4) активность

5) прочность

6) индивидуальный подход

Ю.К. Бабанский выделяет 5 групп принципов:

1) направлена на отбор содержания обучения

2) на отбор задачи обучения

3) на отбор формы обучения

4) выбор методов обучения

5) анализ результатов

В основу развития современного образования заложен принцип непрерывного обучения.

Принципы обучения не являются раз и навсегда установленные, они углубляются и изменяются.

Принцип научности, как дидактический принцип, сформулирован Н.Н. Скаткиным в 1950 году. Особенностью принципа:

отображает, но не воспроизводит точности системы науки, сохраняя по возможности общие черты присущую им логику, этапность и систему знаний.

Опора к последующим знаниям на предыдущие.

Системная закономерность расположения материала по годам обучения в соответствии с возрастными особенностями и возрастом обучаемых, а также дальнейшие развитии обучающих.

Раскрытие внутренних связей между понятиями закономерностями и связи с другими науками.

В переработанных программах были особо выделены принципы наглядности.

Принцип наглядности обеспечивает переход от живого созерцания пр- венному мышлению. Наглядность делает более доступным, конкретным и интересным, развивает наблюдательность и мышление, обеспечивает связь между конкретным и абстрактным, способствует развитию абстрактного мышления.

Чрезмерное употребление наглядности может привести к нежелательным результатам.

Виды наглядности:

натуральный (модели, раздаточный материал)

изобразительная наглядность (рисунки, фото и т.д)

символическая наглядность (схемы, таблицы, чертежи, диаграммы)

Принципы:

принцип сознательности обучения предлагает глубокое знание изучаемого усвоения материалом и умения применять на практике. Данный принцип достигается при оптимальном сочетании руководящей ролью учения и активной деятельности ученика (восприятие, сознательное усвоение). В поле сознание выполняет только тот материал, который хорошо понят, проверкой 123 является система продуманных упражнений.

2) Формальность. Критерий формальности:

1.отрыв формы от содержания

2. неумение применять теоретическую математику на практике

3. преобладание памяти над пониманием

3) Прочность. Данный принцип, чтобы у учащихся на долго сохранялись приобретенные ЗУН- этого не возможно достигнуть без глубокого понимания материала т.е здесь превалирует связь между принципом сознательности и научности, однако для прочного усвоения также необходимо учитывать особенности обучаемых, закономерности, находящиеся в промежутке в зависимости от сохранения и применения. Также можно отметить, что память имеет избирательный характер.

4) Принцип системности и последовательности.

Системность в обучении математики предполагает соблюдение определенного порядка в рассмотрении и изучении фактов и постепенное овладение основными понятиями и положениями школьного курса математики.

Последовательность в обучении математике идет:

а) от простого к сложному

б) от представлений к понятиям

в) от известного к неизвестному

г) от знания к умению, а от него – к навыку.

5) принцип доступности. В данном принципе вытекает из требования учета возрастных особенностей (чтобы 123 и содержание учебного материала были по силам обучающим и составляющими умственному развитию и запасу знания).

Применение: необходимо учитывать следующие условия

от простого к сложному , от легкого к тяжелому (от неизвестного к известному)

6)индивидуальный для успешного обучения необходимо учитывать особенности мышления любого ученика, свойства его памяти, слуха, зрения, его характер и волю.

Методы обучения математики.

Методы подразделяются на общие дидактические и специальные.

Данилов: «Метод- это логический способ передачи учителем ЗУН учащимся» (в данном определении отсутствует о познавательной деятельности)

Ильина: «Метод- это способ с помощью которого учитель руководит познавательной деятельностью учителя» (отсутствует ученик как объект деятельности или учебного процесса)

Метод обучения- это способ передачи знаний и организации познавательной практической деятельности учащихся при котором обучаемые овладевают ЗУН, при этом развивают их способность и формируя их научное мировоззрение.

Существует около 150 определений и 80 классификаций методов обучения.

Методы обучения подразделяются на методы преподавания и методы учения.

Бабанский рассматривает три группы:

методы организации учебной познавательной деятельностью

методы мотивации и стимулирования учебной познавательной деятельностью

методы контроля и самоконтроля за эффективностью учебной познавательной деятельностью

Определение: Общие дидактические методы рассматривают наиболее общие теоретические аспекты организации учебной познавательной деятельности обучаемых.

30. Дискуссия (от лат. discussio — рассмотрение, исследование) — обсуждение спорного вопроса, проблемы. Важной характеристикой дискуссии, отличающей её от других видов спора, является аргументированность. Обсуждая спорную (дискуссионную) проблему, каждая сторона, оппонируя мнению собеседника, аргументирует свою позицию.

Под дискуссией также может подразумеваться публичное обсуждение каких-либо проблем, спорных вопросов на собрании, в печати, в беседе. Отличительной чертой дискуссии выступает отсутствие тезиса, но наличие в качестве объединяющего начала темы. К дискуссиям, организуемым, например, на научных конференциях, нельзя предъявлять тех же требований, что и к спорам, организующим началом которых является тезис. Дискуссия часто рассматривается как метод, активизирующий процесс обучения, изучения сложной темы, теоретической проблемы.

31.

Факультативные занятия по математике

.

32. Внеклассная работа с учащимися, проявляющими к изучению математики повышенный интерес и способности, отвечает  следующим основным целям: пробуждение и развитие устойчивого интереса учащихся к математике и ее приложениям; расширение и углубление знаний учащихся по программному материалу; развитие математических способностей, мышления, культуры учащихся; развитие у учащихся умения самостоятельно и творчески работать с учебной и научно-популярной литературой; привитие учащимся навыков научно-исследовательского характера; расширение и углубление представлений учащихся о практическом значении и культурно-исторической ценности математики, о роли ведущих ученых-математиков в развитии мировой науки.

Внеклассная работа может осуществляться в самых разнообразных формах и видах. Индивидуальная работа – работа с учащимися с целью руководства внеклассным чтением по математике, подготовкой докладов, рефератов, математических сочинений, изготовлением моделей; подготовка некоторых учащихся к участию в олимпиаде. Групповая работа – систематическая работа, проводимая с достаточно постоянным коллективом учащихся. К ней можно отнести факультативы, кружки, спецкурсы. Массовая работа – работа, проводимая с большим детским коллективом (вечера, научно-практические конференции, недели математики, олимпиады, конкурсы, соревнования и т.п.). Наиболее распространенными формами внеклассной работы с учащимися по математике являются: система спецкурсов, кружков, факультативов; олимпиады  математические соревнования; школьная математическая печать; математические вечера; недели (декады) математики; математические экскурсии; внеклассное чтение по математике; школьные математические конференции; математические общества учащихся.

Планируя систему внеклассной работы в современной школе, необходимо учитывать закономерности развития учебной деятельности, связанные с возрастными особенностями школьников, в соответствии с которыми и должен осуществляться выбор содержания и форм внеклассной работы. Следует помнить и о вариативности и личностной направленности содержания в предпрофильной подготовке и профильном обучении. При планировании внеклассной работы методическому объединению учителей математики желательно обозначать не только, какие мероприятия будут проведены, но и цели, ответственных за подготовку и проведение мероприятий.

33. правила подготовки презентации доклада.

Доклад:

1. Время доклада не должно превышать 10-15 минут (лучше 10).

2. Доклад не зачитывается, а рассказывается по плану, который можно набросать на листочке.

3. Докладчик должен обладать гораздо более широкой информацией о предмете, чем представляет слушателям. Это даст ему возможность далее ответить на заданные вопросы. 4. Доклады должны содержать больше информации чем в учебнике, но в то же время содержать только те сведения, которые слушатели в состоянии запомнить и потом воспроизвести в контрольной работе (например, не надо тратить время на детальное описание окраски какого-то одного вида).

5. Доклад должен включать информацию о русском и латинском названии семейства (или отряда), входящих в него таксонах, количестве видов, распространении (в целом и на территории России), особенностях анатомии и экологии (питание, поведение, размножение), а также о природоохранном статусе группы или отдельных видов. Самое главное, чтобы у слушателей сложилось четкое представление, чем это семейство (отряд) отличается от прочих.

6. Отдельные виды стоит описывать только в том случае, если они обитают на территории России или Красноярского края.

Презентация:

1. Не более 12-14 слайдов

2. Презентации не должны содержать большие текстовые блоки!

3. Приветствуются таксономические и анатомические схемы, карты распространения, картинки, фотографии и т.д.

4. Структура презентации должна отражать структуру доклада, и какой-то степени восприниматься даже без него.

5. Текст в заголовках, подписях к рисункам или таблицах должен быть читаем.

6. Фотографии должны быть снабжены ссылками – откуда они взяты (авторское право).

7. В конце презентации – слайд с перечнем использованных источников.

34.

Правила выступление к научным докладам

.

35.

Теория вероятности и математическая статистика

.

События. Виды событий


37.

Требование к оформлению и ведению документаций учителя математики

.

38.

Составление монологическиой речи

.

Обучение монологической речи осуществляется в процессе работы с печатным текстом, на ситуативной основе и с использованием аутентичного образца монологического сообщения.

39.

Составление диалога

.

40.

Правила ведения деловых телефонных переговоров

.

 

← Предыдущая
Страница 1
Следующая →

Скачать

документ.docx

документ.docx
Размер: 119 Кб

Бесплатно Скачать

Пожаловаться на материал

Профессиональный язык позволяет сформировать профессиональные компетенции у будущего специалиста, войти в предметную область специальности, ориентироваться в специальных текстах на русском языке, строить монологические высказывания профессионального содержания

У нас самая большая информационная база в рунете, поэтому Вы всегда можете найти походите запросы

Искать ещё по теме...

К данному материалу относятся разделы:

Нормы литературного языка

Правильность речи

Профессиональный язык учителя математики

Речевое мастерство

Характеристика содержания предметной области математика

Выступление как разновидность ораторской речи

Универсальные понятия и термины математической наукой

Термины и понятия по теме введение в математический анализ

Языковые особенности устной речи обращение приветствие

Этика речевого общения и этикетные формулы речи

Языковые особенности письменной речи

Дифференциальное исчисление функций нескольких переменных

Связь профиссионального математического русского языка с дисциплинами специальности

Факультативные занятия по математике

Правила выступление к научным докладам

Теория вероятности и математическая статистика

События. Виды событий

Требование к оформлению и ведению документаций учителя математики

Составление монологическиой речи

Составление диалога

Правила ведения деловых телефонных переговоров

Похожие материалы:

Проблема международного терроризма

Реферат на тему: «Проблема международного терроризма». Политология. Международный терроризм как глобальная проблема.

Аналіз відхилень як засіб контролю витрат

Теоретична частина “Аналіз відхилень як засіб контролю витрат” Класифікація витрат та необхідність управління витратами. Аналіз відхилень як засіб контролю витрат. Гнучкий бюджет. Обчислення відхилень і їхній аналіз. Контроль витрат є важливою складовою системи управління витратами, без якої неможлива повноцінна реалізація інших її функцій.

Устаревшие слова в русском языке

Научно - исследовательская работа

Гражданское право. Ответы на тест

Правильные ответы на тестовые вопросы по гражданскому праву

Действующие формы безналичных расчетов

Банковское дело, коммерческие банки. Принципы кредитования и классификация банковских кредитов.

Сохранить?

Пропустить...

Введите код

Ok