Резина как технический материал. Учебная (ознакомительная) практика

Территория рекламы

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Южно-Уральский государственный университет»

(Национальный исследовательский университет)

Факультет «Химический»

Кафедра «Химическая технология»

Наименование темы реферата (вписать название темы индивидуального задания)

индивидуальное задание

ПО УЧЕБНОЙ (ознакомительной) ПРАКТИКЕ

Руководитель практики от ЮУрГУ, доцент кафедры, к.х.н. _____________________К.Р. Смолякова____________________________2014 г.Автор, студент     группы     Хим-153___________________Д.Х. Мухамадиев____________________________2014 г.Индивидуальное задание защищено комиссии с  оценкой    (прописью, цифрой) __________________________________ ____________________________2014 г.

Челябинск 2014

3. РЕЗИНЫ

Резиной называется  продукт  специальной  обработки (вулканизации) смеси каучука и серы с различными добавками.

Вулканизация – превращение каучука в резину, осуществляемое с участием так называемых вулканизирующих агентов и под действием ионизирующей радиации.

Каучуки являются полимерами с линейной структурой и при вулканизации превращаются в высокоэластичные редкосетчатые материалы – резины. Вулканизирующими добавками служат сера и другие вещества. С увеличением содержания вулканизатора (серы) сетчатая структура резины становится более частой и менее эластичной. При максимальном насыщении серой (30–50%) получают твердую резину (эбонит), при насыщении серой 10–15% – полутвердую резину. Обычно в резине содержится 5–8% серы.

Для ускорения вулканизации вводят ускорители, например оксид цинка.

Резина как технический материал отличается от других материалов высокими эластическими свойствами, которые присущи каучуку – главному исходному компоненту резины. Она способна к очень большим деформациям (относительное удлинение достигает 1000%), которые почти полностью обратимы. При нормальной температуре резина находится в высокоэластическом состоянии, и ее эластические свойства сохраняются в широком диапазоне температур.

Модуль упругости лежит в пределах 1–10 МПа, т. е. он в тысячи и десятки тысяч раз меньше, чем для других материалов. Особенностью резины является ее малая сжимаемость (для инженерных расчетов резину считают несжимаемой); коэффициент Пуассона 0,4–0,5, тогда как для металла эта величина составляет 0,25–0,30. Другой особенностью резины как технического материала является релаксационный характер деформации. При нормальной температуре время релаксации может составлять 10-4 с и более. При работе резины в условиях многократных механических напряжений часть энергии, воспринимаемой изделием, теряется на внутреннее трение (в самом каучуке и между молекулами каучука и частицами добавок); это трение преобразуется в теплоту и является причиной гистерезисных потерь. При эксплуатации толстостенных деталей (например, шин) вследствие низкой теплопроводности материала нарастание температуры в массе резины снижает ее работоспособность.

Кроме отмеченных особенностей для резиновых материалов характерны высокая стойкость к истиранию, газо- и водонепроницаемость, химическая стойкость, электроизолирующие свойства и небольшая плотность.

3.1. Состав и классификация резин

Главным исходным компонентом резины, придающим ей высокие эластические свойства, является каучук. Каучуки бывают натуральные (НК) и синтетические (СК). Натуральный каучук получают коагуляцией латекса (млечного сока) каучуконосных деревьев, растущих в Бразилии, Юго-Восточной Азии, на Малайском архипелаге. Синтетические каучуки (бутадиеновые, бутадиен-стирольные и др.) получают методами полимеризации. Впервые синтез бутадиенового каучука полимеризацией бутадиена, полученного из этилового спирта, осуществлен в 1921 г. русским ученым С.В. Лебедевым. Разработаны методы получения синтетических каучуков на основе более дешевого сырья, например нефти и ацетилена.

Помимо каучука в состав резин входят:

Вулканизирующие вещества (агенты) участвуют в образовании пространственно-сеточной структуры вулканизата. Обычно в качестве таких веществ применяют серу и селен, для некоторых каучуков перекиси. Для резины электротехнического назначения вместо элементарной серы (которая взаимодействует с медью) применяют органические сернистые соединения – тиурам (тиурамовые резины).

Ускорители процесса вулканизации: полисульфиды, оксиды свинца, магния и другие влияют как на режим вулканизации, так и на физико-механические свойства вулканизатов. Ускорители проявляют свою наибольшую активность в присутствии оксидов некоторых металлов (цинка и др.), называемых поэтому в составе резиновой смеси активаторами.

Противостарители (антиоксиданты) замедляют процесс старения резины, который ведет к ухудшению ее эксплуатационных свойств. Существуют противостарители химического и физического действия. Действие первых заключается в том, что они задерживают окисление каучука в результате окисления их самих или за счет разрушения образующихся перекисей каучука (применяются альдоль, неозон Д и др.). Физические противостарители (парафин, воск) образуют поверхностные защитные пленки, они применяются реже.

Мягчители (пластификаторы) облегчают переработку резиновой смеси, увеличивают эластические свойства каучука, повышают морозостойкость резины. В качестве мягчителей вводят парафин, вазелин, стеариновую кислоту, битумы, дибутилфталат, растительные масла. Количество мягчителей составляет 8–30% массы каучука.

Наполнители по воздействию на каучук подразделяют на активные (усиливающие) и неактивные (инертные). Активные наполнители (углеродистая сажа и белая сажа – кремнекислота, оксид цинка и др.) повышают механические свойства резин: прочность, сопротивление истиранию, твердость. Неактивные наполнители (мел, тальк, барит) вводятся для удешевления стоимости резины.

Часто в состав резиновой смеси вводят регенерат – продукт переработки старых резиновых изделий и отходов резинового производства. Кроме снижения стоимости регенерат повышает качество резины, снижая ее склонность к старению.

Красители минеральные или органические вводят для окраски резин. Некоторые красящие вещества (белые, желтые, зеленые) поглощают коротковолновую часть солнечного спектра и этим защищают резину от светового старения.

В настоящее время резиновые материалы классифицируются по виду сырья, виду наполнителя, степени упорядочения макромолекул и пористости, экологическим способам переработки, типам теплового старения и изменению объема после пребывания в нефтяной жидкости.

Классификация по виду сырья учитывает наименование каучуков, явившихся исходным сырьем при производстве резиновых материалов: НК – натуральный каучук, СКБ – синтетический каучук бутадиеновый, СКС – бутадиен-стирольный каучук, СКИ – синтетический каучук изопреновый, СКН – бутадиен-нитрильный каучук, СКФ – синтетический фторосодержащий каучук, СКЭП – сополимер этилена с пропиленом, ХСПЭ – хлорсульфополиэтилен, БК – бутилкаучук, СКУ – полиуретановые каучуки.

По виду различают наполнители для резиновых материалов порошкообразные и ткани.

По степени упорядочения макромолекул и пористости резиновые материалы могут быть мягкими, жесткими (эбонитовыми), пористыми (губчатыми) и пастообразными. Плотность губчатой резины 100–750 кг/м3.

Среди технологических способов переработки для резиновых материалов используются выдавливание, прессование и литье.

По тепловому старению существуют семь типов: Т07, …, Т25.

По изменению объема после пребывания в нефтяной жидкости различают семь классов: К1,…, К7.

Наиболее крупные потребители резины – шинная промышленность (свыше 50%) и промышленность резинотехнических изделий (более 22%).

3.2. Получение изделий из резины

Технология изготовления изделий из резиновых смесей состоит из ряда операций, выполняемых в определенной последовательности:

1. Нарезание каучука на куски и его пластификация путем многократного пропускания через нагретые до 40–50 °С валки с целью улучшения смешиваемости с другими ингредиентами.

2. Смешивание каучука с другими компонентами в строго определенной последовательности: сначала вводят противостарители, затем – вулканизаторы. Смешивание проводят в резиномесительных или вальцовочных машинах.

3. Каландрование резиновой смеси с целью получения сырой резины путем пропускания ее через трехбайтовую клеть листопрокатного стана-каландра. Валки стана имеют разную температуру: верхний – 90 °С, нижний – 15 °С. Резиновая масса нагревается и под действием валков превращается в лист или ленту.

4. Изготовление изделий из сырой резины методами прессования в специальных пресс-формах под давлением 5–10 МПа или литьем под давлением путем заполнения формы предварительно разогретой сырой резиной.

5. Вулканизация – формирование физико-механических свойств изделия. Горячая вулканизация на вулканизационных машинах при температуре 130–150 °С (нагретый пар, горячая вода и т.д.). При вулканизации имеет место химическое взаимодействие каучука и вулканизаторов, в результате чего линейная молекулярная структура каучука преобразуется в сетчатую.

3.3. Классификация резиновых материалов по назначению и области применения

Резиновые материалы делят на группы общего и специального назначения.

Для резин общего назначения основными компонентами являются неполярные каучуки – НК, СКИ, СКС и СКВ. Резины на основе НК отличаются высокой эластичностью, прочностью, водо- и газонепроницаемостью, высокими электроизоляционными свойствами: удельное электросопротивление ρov= 3·1014–23·1018 Ом·см; диэлектрическая проницаемость ε=2,5. Наибольшее распространение в промышленности получили резины на основе СКС (СКС-10, СКС-30, СКС-50). Это те резины, которые хорошо работают при многократных деформациях, имеют хорошее сопротивление старению; по газонепроницаемости и диэлектрическим свойствам равноценны резинам на основе НК.

Резиновые материалы общего назначения используются для производства изделий, работающих в воде, на воздухе, в слабых растворах кислот и щелочей при температурах эксплуатации -35–+ 130°С. Такими изделиями являются шины, рукава, конвейерные ленты, изоляция кабелей и др.

Резиновые материалы специального назначения делятся на бензино-маслостойкие, химически стойкие, коррозионно-стойкие, светостойкие, тепло- и морозостойкие, электротехнические и износостойкие.

Бензиномаслостойкие резиновые материалы изготавливают на основе наирита, тиокола, СКН и других типов каучуков. Их основными потребительскими свойствами являются устойчивость к воздействию гидравлических жидкостей, масло-, бензино- и озоностойкость, а также водонепроницаемость. Резины, стойкие к воздействию гидравлических жидкостей, изготавливают: для работы в масле – на основе СКН, для кремнийорганических жидкостей – на основе каучуков НК, СКМС-10 и др.

Бензиномаслостойкие резины на основе каучуков СКН могут работать в среде бензина, топлива, масел в интервале температур от -30 до 130°С Акрилатные резины (марки БАК) теплостойки, обладают адгезией к полимерам и металлам, стойки к действию серосодержащих масел и кислорода, но обладают малой эластичностью, низкой морозостойкостью и невысокой стойкостью к воздействию горячей воды и пара. Из бензи-номаслостойких резин изготавливают шины, варочные камеры, диафрагмы и т.д. Акрилатные резины широко применяют в автомобилестроении.

Химически стойкие резиновые материалы изготавливают на основе бутилкаучука. К изделиям из таких резин предъявляются повышенные требования по масло-, бензино-, растворителе- и теплостойкости. Они используются, например, для изготовления транспортных лент подачи горючих материалов.

Коррозионно-стойкие резиновые материалы изготавливают на основе ХСПЭ. Они являются незаменимым конструкционным материалом для изделий, работающих в морской воде. Кроме всего прочего, они не обрастают при эксплуатации водорослями и микроорганизмами.

Светоозоностойкие резиновые материалы изготавливают на основе насыщенных каучуков – СКФ, СКЭП, ХСПЭ и БК. Резины на основе фторосодержащего каучука СКФ устойчивы к тепловому старению, воздействию масел, топлива, различных растворителей (даже при повышенных температурах), негорючие, обладают высоким сопротивлением истиранию, но имеют низкую эластичность и малую стойкость к большинству тормозных жидкостей. Резины на основе СКФ и этиленпро-пиленовых каучуков СКЭП стойки к действию сильных окислителей (НNО3, Н203 и др.) и не разрушаются при работе в атмосферных условиях в течение нескольких лет. Резины на основе хлорсульфополиэти-ленового каучука ХСПЭ применяют как конструкционный материал (противокоррозионные, не обрастающие в морской воде водорослями и микроорганизмами покрытия), а также для защиты от гамма-излучения. Резины на основе бутилкаучука БК широко применяют в шинном производстве, а также для изготовления изделий1 работающих в контакт: с концентрированными кислотами и другими химикатами. Светоозоностойкие резиновые материалы предназначены для масло- и бензин стойких изделий – гибких шлангов, диафрагм, уплотнителей и др.

Теплостойкие резиновые материалы изготавливают на основе НК, СКТ и СКС. Морозостойкими являются резины на основе каучуков, имеющих низкие температуры стеклования, например НК, СКС-10, СКТ. Эти резиновые материалы используются для сверхтепло- и морозостойких изделий, электротехнических деталей и др.

Электротехнические резиновые материалы делятся на две группы: изоляционные и проводящие. Электроизоляционные резиновые материалы изготавливают на основе неполярных каучуков, например НК, СКБ, СКС, СКТ и БК. Их электрические свойства: ρov= 1011–1015 Ом·см; ε=2,5–4. Электропроводящие резины для экранированных кабелей получают из натурального, синтетического бутадиенового каучуков, наирита с обязательными добавками сажи и графита в количестве 65–70% по массе каучука. Удельное электросопротивление проводящих резин ρov = 102–104 Ом·см.

Износостойкие резиновые материалы изготавливают на основе СКУ. Рабочие температуры резин составляют -30–+130 °С. Они предназначены для производства шин, амортизаторов, буферов, клапанов, обкладок в транспортных системах, для абразивных материалов, обуви и др.

3.4. Факторы, влияющие на свойства резин в процессе эксплуатации

В процессе эксплуатации резиновые изделия подвергаются различным видам старения (световое, озонное, тепловое, радиационное, вакуумное и др.), что снижает их работоспособность; изменение свойств может быть необратимым. Стойкость резин при старении зависит от степени ненасыщенности каучука, гибкости макромолекул, прочности химической связи в цепи, способности к ориентации и кристаллизации. Изменение свойств оценивается по изменению прочностных и упругих характеристик, по восстанавливаемости резины (изменение величины деформации во времени после снятия нагрузки), стойкости к раздиру (концентрации напряжений).

Прочность кристаллизующихся каучуков (НК, бутил каучук, хлоропрен, СКИ), даже без наполнителей, составляет 20–30 МПа. Работоспособность, долговечность резин при динамическом нагружении определяются усталостной прочностью.

Под действием атмосферных условий, озона происходит растрескивание напряженных резин из ненасыщенных каучуков (НК, БНК, БСК); стойки к озонному старению насыщенные каучуки (СКФ, СКТ и ЭП). Свет вызывает фотоокисление каучуков, которое зависит от наличия в них двойных связей. По убыванию скорости фотоокисления каучуки можно разложить в ряд: НК, СКБ >СКС>БК. Светостойки резины из СКФ и СКТ.

Фотопроцесс ускоряется при повышении температуры (рис. 11).

Рис. 11. Изменение относительного статического модуля упругости при светостарении вулканизата СКБ: 1 – 25 °С, в темноте; 2 – 80 °С, в темноте;

3 – 25 °С, при освещении; 4 – 80 °С, при освещении

Скорость старения резин в напряженном состоянии выше, чем в свободном состоянии. Повышение озоностойкости достигается  введением соответствующих ингредиентов и нанесением защитной пленки (из полиуретана). Сроки службы или хранения изделий из резины определяются по изменению остаточной деформации сжатия εост, которая для уплотнительных материалов допускается до 80%, и релаксации напряжения 0,2.

Для прогнозирования сроков сохранности свойств резины применяют комбинированный метод, сочетающий эксплуатационные испытания полимерного материала с ускоренными.

Принимается следующее соотношение:

(t1/T1) + (t2/T2) = 1,

где t1 – время, в течение которого изделие эксплуатируется (хранится); оно составляет небольшую часть от T1 – полного срока службы изделия; t2–время достижения определенных значений выбранных показателей при ускоренном старении; T2 – время достижения предельных значений тех же показателей для изделий, подвергавшихся ускоренному старению.

Термическая стойкость. Прочность химических связей в макромолекулах и их структура определяют термическую стойкость полимеров. По увеличению термической стойкости каучуки располагаются следующим образом: тиокол < НК < БНК, БСК < СКЭП < СКФ < СКТ.

При повышенных температурах (150 °С) органические резины теряют прочность после 1–10 ч нагрева, резины на основе СКТ могут при этой температуре работать длительно. Прочность силоксановой резины при нормальной температуре меньше, чем прочность органических резин, при 200 °С их прочности одинаковы, а при температуре 250–300 °С она даже выше. Особенно ценны резины на основе СКТ при использовании их в условиях длительного нагрева.

При повышенных температурах протекает деструкция макромолекул, выделяются жидкие и газообразные продукты, образуются циклические и ароматические структуры, обладающие высокой термостойкостью. При температуре в сотни и тысячи градусов термическая стойкость определяется по потере половины массы полимера за 30 мин (например, для НК, СКИ это 330 °С, для СКД – 410 °С).

Действие отрицательных температур. При низких температурах снижаются и даже полностью утрачиваются высокоэластические свойства, происходит переход в стеклообразное состояние и возрастание жесткости резины в тысячи и десятки тысячи раз. Коэффициент морозостойкости (уровень потери свойств) при сдвиге больше, чем при сжатии и растяжении (Кмсдв > Кмсж > Кмраст).

Действие ионизирующего излучения на резину – радиационное старение. На стойкость к радиации влияет природа каучука, ингредиентов, защитных добавок (антирадов), среда. Наибольшая скорость старения у резин на основе структурирующихся каучуков (СКН, СКБ). Под действием радиации у этих резин увеличивается твердость, уменьшается модуль упругости. Наименьшая скорость старения у резин на основе НК, СКИ-3, СКЭП. Деструктируют резины из бутилкаучука БК. Во фторкаучуке происходит сшивание линейных макромолекул, при этом растут твердость и модуль упругости, а прочность снижается незначительно. В порядке повышения относительной радиационной стойкости резин каучуки располагаются в следующий ряд: бутилкаучук < фторсодержащие каучуки < силиконовый каучук < хлоропреновый < акрилатный < бутадиен-нитрильный < бутадиен-стирольный < натуральный < этиленпропиленовый < уретановый. Наиболее стойкими к старению являются уретановые резины (в макромолекулах каучука содержатся фенильные кольца). Стойкость резин к радиации может изменяться в зависимости от модификации каучука, ингредиентов, вида и количества защитных добавок (антирадов).

Резины на основе каучуков СКН и НК широко применяют в ядерной технике для изготовления уплотнительных резинотехнических деталей (РТД).

Действие вакуума. Резиновые уплотнители могут работать в вакууме при различных температурах, в агрессивных средах, по высоким давлением. Однако недостатками резины являются газопроницаемость, газовыделение, термоокисляемость. Оценка вакуумстойкости делается по потере массы и зависит от типа каучука. По вакуумстойкости каучуки условно разделяют на три группы:

  1.   –  устойчивые в вакууме (термовакуумная стойкость выше термоокислительной) – СКИ-3, СКД, СКМС-10, СКЭП, СКФ-26, СКТФ-50, СКТФТ-100;
  2.   – устойчивые в вакууме (термовакуумная стойкость ниже термоокислительной) – СКТ, СКТВ-1, СКТФВ-803;

3 – неустойчивые в вакууме – СКУ, ПХП, СКН-40, СКФ-32.

В промышленности в основном используются резины на основе каучуков НК, СКИ-3, СКН-26, СКФ-26.

← Предыдущая
Страница 1
Следующая →

Скачать

резина.doc

резина.doc
Размер: 155.5 Кб

Бесплатно Скачать

Пожаловаться на материал

индивидуальное задание Кафедра «Химическая технология» Факультет «Химический»

У нас самая большая информационная база в рунете, поэтому Вы всегда можете найти походите запросы

Искать ещё по теме...

Похожие материалы:

Вопросы для подготовки к экзамену по дисциплине «Технология туроператорской и турагентской деятельности»

Понятие туристского рынка. Дайте опредление терминам «туроператор», «турагент», «турист» Сущность туроператорской деятельности. Роль туроператора в составлении тура. Классификация и функции туроператоров

Гражданское право. Вступление

Гражданское право занимает центральное место среди отраслей, регулирующих имущественные отношения. Предметом гражданского права является две группы общественных отношений

Психосоматика

Психопатологические синдромы, возникающие преимущественно вследствие соматогенных влияний (Симптоматические психозы) Невротические и психические расстройства, развивающиеся вследствие искаженной реакции на болезнь (Нозогении)

История Китая и Японии

Создание японского государства, процессы в период разъединения Китая. Китайская империя, императоры. Складывание государства Японии

Социальная идентичность

Социальная идентичность складывается из отдельных идентификаций и определяется принадлежностью человека к различным социальным категориям. Один из вариантов решения этой проблемы предложен концепцией социальной идентичности.

Сохранить?

Пропустить...

Введите код

Ok