Движение вязко пластичных жидкостей по трубам

Содержание.

Введение. 2

Движение вязко пластичных жидкостей по трубам 3

Режимы движение: структурный, турбулентный. 4

Изменение скоростей 4

Обобщенное число Рейнольдса 6

Движение неньютоновских жидкостей, подчиняющихся степенному реологическому закону, по трубам 7

Заключение. 9

Список использованной литературы. 10

Введение.

Как манна небесная свалилось на учёных-физиков XIX века совпадение положений кинетической теории газов  с экспериментальными результатами, полученными в рамках термодинамики. Два физических подхода –макроскопический  (термодинамический) и микроскопический(молекулярно-кинетический) – дополнили друг друга. Идея о том, что вещество состоит из молекул, а те, в свою очередь, из атомов нашла убедительное подтверждение.

Казалось, на основе кинетической теории,  легко можно определить свойства газов, поскольку достаточно знать свойства входящих в состав молекулы  атомов  для определения свойств самого вещества, но в действительности всё оказалось не так просто. Благодаря этой теории удалось определить лишь некоторые свойства газов, например, вывести уравнение состояния газа, но для определения таких характеристик газов как коэффициенты теплопроводности, вязкости и диффузии нужно было серьёзно потрудиться. Для конденсированных сред -  твёрдых тел, жидкостей и сжатых газов получить результаты было ещё труднее, поскольку должно учитываться то, что молекулы взаимодействуют между собой не только при ударах. Поэтому, говорить о том, что все физические явления микромира могут быть объяснены и рассчитаны на основе молекулярно-кинетических представлений,  не приходиться.

Дискретное(не сплошное) строение вещества было обнаружено лишь в конце XIX века, а опыты, доказывающие существование молекул, проведены в 1908 году французским физиком Жаном Батистом Перреном. Обнаружение дискретной структуры строения  вещества  позволило определить границы применимости механики сплошных сред. Она работает только в тех случаях, когда систему можно разбить на малые объёмы, в каждом из которых содержится всё же достаточно большое количество частиц, чтобы оно подчинялось статистическим закономерностям. Тогда элементы среды находятся в состоянии термодинамического равновесия, а их свойства описываются небольшим числом макроскопических параметров. Изменения в таком малом объёме должны происходить достаточно медленно, чтобы термодинамическое равновесие сохранялось.

При выполнении этих условий, справедлива гипотеза о сложности среды, которая лежит в основе механики сплошной среды. Сплошной средой считается не только твёрдое тело, жидкость или газ, но и плазма (даже сильно разряженная), такая, как звёздный ветер. Число частиц в элементе объёма такой среды невелико, но благодаря большому радиусу действия сил между заряженными частицами микроскопические параметры меняются от элемента к элементу непрерывно.

Как движется в вакууме материальная точка досконально известно со времён Исаака Ньютона. Гораздо сложнее описать её движение в воздухе, воде или другой среде. Именно с этими вопросами имеет дело, являющаяся разделом физики,  наука гидр аэромеханика.

Движение жидкостей и газов.

Движение жидкостей и газов, как и все другие виды движения, рассматриваемые в механике, можно полностью охарактеризовать, оперируя единицами измерения длины, времени и силы. Так, диаметр парашюта можно измерять в метрах, время снижения, скажем, на 100 метров – в секундах, а вес груза – в ньютонах. Точно так же входное сечение насоса можно измерять в квадратных метрах, объемный расход среды – в кубических метрах в секунду, а мощность – в ньютон-метрах (джоулях) в секунду. Существует много способов измерения таких характеристик течения с использованием различных – механических и электрических – эквивалентов линейки, часов и пружинных весов. Например, скорость жидкостей и газов можно оценивать по числу оборотов в единицу времени проградуированной крыльчатки (гидрометрическая вертушка и анемометр) или по изменению электросопротивления нагреваемой проходящим током проволоки (проволочный термоанемометр); давление можно определять по вызываемому им отклонению изогнутой трубки или мембраны (манометр Бурдона и барометр-анероид) либо по току, генерируемому пьезокристаллом.

Для того, чтобы вязко пластичная жидкость начала перемещаться необходимо создать между начальным и конечным сечениями участка трубы длиной / некоторую разность напоров, при которой будет преодолена величина начального статического напряжения сдвига. При этом жидкость отрывается от стенок трубы и первоначально движется на подвижном ламинарном слое, сохраняя свою прежнюю пространственную структуру, т.е. с одинаковыми скоростями по всему отсеку потока. Разрушение этой структуры происходит позже и при некотором превышении напора.

Поскольку в начальный момент времени силы трения будут возникать только у стенок трубы, то уравнения равновесия можно записать в следующем виде:

Необходимая разность напоров между началом и концом участка трубы определится следующим образом:

Таким образом, при превышении разности напоров расчётную величину жидкость начнёт двигаться по трубе, причём характер (режим) её движения будет зависеть от величины. При движении вязко пластичной жидкости возможны три режима течения её: структурный, ламинарный и турбулентный.

Условиеявляется необходимым для начала движения жидкости

в структурном режиме, при этом под величиной статического напряжения сдвига следует понимать величину соответствующую длительному покою жидкости, т.е. с учётом проявления тиксотропных свойств жидкости.

Структурный режим течения жидкости предполагает наличие вдоль стенок трубы сплошного ламинарного слоя жидкости; в центральной части трубы наблюдается ядро течения, где жидкость движется, сохраняя прежнюю свою структуру, т.е. как твёрдое тело. Размеры центрального ядра течения (радиус) может быть определён исходя из следующего соотношения:

При увеличении А/г размеры ламинарной зоны будут постепенно увеличиваться за счёт уменьшения размеров ядра течения пока структурный режим не перейдёт в полностью ламинарный режим движения жидкости. В дальнейшем ламинарный режим постепенно сменится турбулентным режимом движения жидкости.

Для определения закона распределения скоростей по сечению потока при структурном режиме движения жидкости запишем некоторую функцию для касательных напряжений в соответствии с 

формулой Бингама:

Тогда распределение скоростей по сечению трубы можно выразить следующим образом:

?

где: - касательное напряжение на стенке трубы радиуса,

- скорость жидкости на расстоянииот центра трубы. После интегрирования этого уравнения получим:

И окончательно:

Для определения скорости в ядре течения примем, где- радиус ядра течения

(структурной части потока жидкости). Тогда величина скорости в этом ядре течения (скорости в ядре течения одинаковые равны): '

Расход жидкости при структурном движении можно определить, используя известные соотношения для круглой трубы:

Интегрируя уравнение в пределах от до, получим:

f

Последнее уравнение, известное как формула Букингама, можно упростить:

где: - разность давлений при начале движения жидкости, когда касательные напряжения в ней достигают величины касательного напряжения сдвига. Если пренебречь величиной второго члена ввиду его малости, получим:

* где: - обобщённый критерий Рейнольдса.

Комплексный параметр= Sen носит название числа Сен-Венана.

Таким образом, при расчётах движения вязкопластических жидкостей можно пользоваться уравнениями для ньютоновских жидкостей, заменяя в уравнениях величину числа Рейнольдса Re на обобщённый критерий Рейнольдса

Турбулентный режим течения жидкости. Характер течения вязкопластических жидкостей существенно не отличается от турбулентного потока ньютоновских жидкостей. Отличие состоит в количественных соотношениях между величинами коэффициентов трения и числом Рейнольдса. Так коэффициент трения может быть выражен как функция обобщённого числа Рейнольдса (в общем виде) следующим образом:

где: В и п - некоторые параметры, устанавливаемые по данным экспериментов. Так по данным экспериментов Б.С. Филатова величины коэффициентов В и п принимаются следующими:

- для не утяжелённого глинистого раствора В = 0,1 и п = 0,15,

- для утяжелённого глинистого раствора В = 0,0025 и п = -0,2.

Для расчёта трубопроводов при движении по ним глинистых и цементных растворов можно пользоваться формулой Б.И. Мительмана:

при: Re* =2500-40000..

Движение вязко пластичных жидкостей в открытых каналах

В практике работы горных предприятий не редки случаи, когда приходится транспортировать неньютоновские жидкости в безнапорных потоках (самотёком), в лотках, по желобным системам. Характер течения вязко пластичных жидкостей в открытых каналах при структурном режиме идентичен аналогичному и напорному потокам такой жидкости в круглых трубах. Т.е. при структурном режиме течения жидкости также выделяется центральное ядро течения, где жидкость движется как твёрдое тело, сохраняя свою первоначальную структуру. Ядро течения подстилается непрерывным ламинарным слоем жидкости. Течению таких жидкостей по открытым каналам прямоугольного профиля посвящены работы Р.И. Шищенко. По данным его исследований расход вязко пластичной жидкости при структурном режиме движения может быть определён по приближённой формуле:

где: - скорость течения ядра потока

- площадь живого сечения канала шириной и глубиной заполнения h,

- гидравлический уклон, соответствующий началу течения жидкости,

/ - уклон дна канала,

- гидравлический радиус живого сечения потока. 

Движение неньютоновских жидкостей, подчиняющихся степенному реологическому закону, по трубам

Для жидкостей, подчиняющихся степенному реологическому закону, функция напряжения сдвига будет иметь следующий вид:

Тогда распределение скоростей в сечение потока будет соответствовать следующей зависимости:

Интегрируя это уравнение, найдём:

, или:

Отсюда можно получить выражение для расхода жидкости:

Отсюда определим величину перепада давления, обеспечивающую движение жидкости и соответствующую величину потерь напора на трение.

Сопоставляя полученное выражение с формулой Дарси-Вейсбаха, найдём величину коэффициента трения и обобщённый критерий Рейнольдса:

Заключение.

Механика жидкости и газа является особым разделом физики. Как уже говорилось ранее, в основу её входят несколько основных законов. Эти законы актуальны не только по отношению к рассмотренным фазам вещества, но и  для твёрдых тел (правда, с небольшими «подгонками» под физическую суть этих тел).  Для наибольшего удобства и краткости, законы отражены в математических формулах – языке науки. На основе этих законов созданы различные механизмы, которыми окружил себя человек. Механизмы сильно облегчают и ускоряют процессы производства, да и физический труд человека как таковой. Лишь благодаря достижениям в области точных наук стало возможным освоить то, что было недосягаемо для человека ранее. Это глубины океана, возможность передвижения в атмосфере, полёты в космос и многое другое. И наука не стоит на месте. С каждым днём учёные приближают нас на шаг ближе к познанию жизни. Полностью познать Вселенную, конечно, невозможно, но осмыслить то, что доступно человеку со временем неминуемо.

Список использованной литературы.

1. И. К. Кикоин, А. К. Кикоин «Физика»  — М.: Просвещение, 1992г.

2. О. К. Костко «Механика».  –М.:Лист, 1998г.

3. Интернет ресурсы.

← Предыдущая
Страница 1
Следующая →

Режимы движение: структурный, турбулентный Изменение скоростей Обобщенное число Рейнольдс Движение неньютоновских жидкостей, подчиняющихся степенному реологическому закону, по трубам

У нас самая большая информационная база в рунете, поэтому Вы всегда можете найти походите запросы

Искать ещё по теме...

Похожие материалы:

ЖАЛО СМЕРТИ Рассказ о двух отроках

Методология психологических исследований

Методология науки разрабатывает проблемы приемов, способов и методов познавательной деятельности. Методология, как правило, понимается как наука о методе.

Радионуклидное исследование щитовидной железы, печени и почек

Сцинтиграфия щитовидной железы. Принцип проведения исследования. Как подготовиться к процедуре. Показания к проведению сцинтиграфии. Результаты сцинтиграфии. Радионуклидное исследование печени. Статическая визуализация печени. Методика исследования. Интерпретация полученных данных. Динамическая визуализация печени. Радионуклидное исследование почек. Методика исследования. Статическая визуализация почек.

Концептуальные основы

Современными  специалистами и психологами доказан факт, что семья и детский сад  как первичные социальные воспитательные институты способны обеспечивать  полноту и целостность социально - педагогической и культурно – образовательной  среды для жизни, развития и самореализации ребёнка

Екологычна безпека. Міністерське тестування. Відповіді

Екологічна безпека є невід’ємною складовою частиною національної безпеки держави

Сохранить?

Пропустить...

Введите код

Ok