Второе начало термодинамики. Энтропия. Энергия Гиббса. Прогнозирование направления самопроизвольно протекающих процессов в изолированной и закрытой системах.

Второе начало термодинамики: в изобарно-изотермических условиях (р, Т = const) в системе самопроизвольно могут протекать только такие процессы, в результате которых энергия Гиббса системы уменьшается (ΔG < 0). В состоянии равновесия G = const, G = 0

Обратимый процесс – если при переходе из начального состояния в конечное все промежуточные состояния оказываются равновесными

Необратимый процесс – если хоть одно из промежуточных состояний неравновесное.

Энтропия – функция состояния, приращение которой ΔS равно теплоте Qмин, подведённой к системе в обратимом изотермическом процессе, делённой на абсолютную температуру T, три которой осуществляется процесс: ΔS = Qмин/ T или мера вероятности пребывания системы в данном состоянии – мера неупорядоченности системы.

Энергия Гиббса – функция состояния, являющаяся критерием самопроизвольности процессов в открытых и закрытых системах.

G = H – TS

ΔG = ΔH – TΔS

cd(D)ce(E)

ΔrG = ΔrG0 + RTln ca(A)cb(B) – изотерма Вант-Гоффа

Химический потенциал вещества Х в данной системе – величина, которая определяется энергией Гиббса G (X), приходящейся на моль этого вещества. μ(X) = n (X)

Критериями направления самопроизвольного протекания необратимых процессов являются неравенства ΔG < 0 (для закрытых систем), ΔS > 0 (для изолированных систем).

В ходе самопроизвольного процесса в закрытых системах G уменьшается до определенной величины, принимая минимально возможное для данной системы значение Gmin. Система переходит в состояние химического равновесия (ΔG = 0). Самопроизвольное течение реакций в закрытых системах контролируется, как энтальпийным (ΔrH), так и энтропийным (TΔrS) фактором. Для реакций, у которых ΔrH < 0 и ΔrS > 0, энергия Гиббса всегда будет убывать, т. е. ΔrG < 0, и такие реакции могут протекать самопроизвольно при любых температурах

В изолированных системах энтропия максимально возможное для данной системы значение Smax; в состоянии равновесия ΔS = 0

Стандартная энергия Гиббса: ΔrG = ΣυjΔjG0j – ΣυiΔiG0i

Второе начало (второй закон) термодинамики. Энтропия. Выделение тепловой энергии в ходе реакции способствует тому, чтобы она протекала самопроизвольно, т.е. без постороннего вмешательства. Однако имеются и другие самопроизвольные процессы, при которых теплота равна нулю (например, расширение газа в пустоту) или даже поглощается (например, растворение нитрата аммония в воде). Это означает, что помимо энергетического фактора на возможность протекания процессов влияет какой-то другой фактор.

Он называется энтропийным фактором или изменением энтропии. Энтропия S является функцией состояния и определяется степенью беспорядка в системе. Опыт, в том числе повседневный, свидетельствует о том, что беспорядок возникает самопроизвольно, а чтобы привести что-нибудь в упорядоченное состояние, нужно затратить энергию. Это утверждение – одна из формулировок второго начала термодинамики.

Существуют и другие формулировки, например, такая: Теплота не может самопроизвольно переходить от менее нагретого тела к более нагретому (Клаузиус, 1850). Брусок, нагретый с одного конца, со временем принимает одинаковую температуру по всей длине. Однако никогда не наблюдается обратный процесс – равномерно нагретый брусок самопроизвольно не становится более теплым с одного конца и более холодным с другого. Другими словами, процесс теплопроводности необратим. Чтобы отнять тепло у более холодного тела, нужно затратить энергию, например, бытовой холодильник расходует для этого электрическую энергию.

Рассмотрим сосуд, разделенный перегородкой на две части, заполненные различными газами. Если убрать перегородку, то газы перемешаются и никогда не разделятся самопроизвольно снова. Добавим каплю чернил в сосуд с водой. Чернила распределятся по всему объему воды и никогда не соберутся самопроизвольно в одну каплю. В обоих случаях самопроизвольно протекающие процессы сопровождаются увеличением беспорядка, т.е. возрастанием энтропииS > 0). Если мы рассматриваем изолированную систему, внутренняя энергия которой измениться не может, то самопроизвольность процесса в ней определяется только изменением энтропии: В изолированной системе самопроизвольно идут только процессы, сопровождающиеся возрастанием энтропии (Больцман, 1896). Это также одна из формулировок второго начала термодинамики. Наглядно проявление энтропийного фактора можно увидеть в фазовых переходах лед–вода, вода–пар, протекающие при постоянной температуре. Как известно при этом происходит поглощение (ледоход – похолодание) и выделение тепла (ледостав – потепление) так, что

ΔHГ = ΔS×T,

где ΔHГ – «скрытая» теплота фазового перехода. В фазовых переходах лед–вода–пар – ΔSл < ΔSв < ΔSп, т.е. энтропия возрастает при переходе от твердого тела к жидкости и от жидкости к газу, а ее величина тем больше, чем беспорядочнее движутся молекулы. Таким образом, энтропия отражает структурные отличия одного и того же химического элемента, молекулы, вещества. Например, для той же воды H2O – кристалл, жидкость, пар; для углерода – графит, алмаз, как аллотропные модификации и т.д.

Абсолютное значение энтропии можно оценить с использованием третьего начала термодинамики (постулата Планка), которое утверждает, что энтропия идеального кристалла при 0 К равна нулю lim ΔS=0 (при T=0).

Единицей измерения энтропии в системе СИ является Дж/К×моль. При этом понятно, что абсолютный нуль температуры недостижим (следствие из второго закона термодинамики), но он имеет важное значение в определении температуры – шкалы Кельвина.

Кроме того, есть еще одна функция состояния вещества – теплоемкость

ΔС = ΔHT,

которая имеет такую же размерность, что и энтропия, но означает способность того или иного вещества отдавать (принимать) тепло при изменении температуры. Например, при изменении температуры на 100°С сталь быстрее нагреется и остывает соответственно, чем кирпич, поэтому печки кладут из кирпича. Величины теплоемкости удельные или молярные табулированы в справочниках обычно для изобарных условий – cp.

Стандартные абсолютные энтропии S°298 образования некоторых веществ приведены в справочной литературе. Обратите внимание, что в отличии от ΔHf простые вещества имеют значения S°298 > 0, т.к. их атомы и молекулы также находятся в беспорядочном тепловом движении. Чтобы найти изменение энтропии в реакции, можно также применить следствие закона Гесса:

ΔS(реакции) = ΔS(продуктов) – ΔS(реагентов)

ΔS > 0 согласно второму началу термодинамики благоприятствует протеканию реакции, ΔS < 0 — препятствует.

Качественно можно оценить знак ΔS реакции по агрегатным состояниям реагентов и продуктов. ΔS > 0 для плавления твердых тел и испарения жидкостей, растворения кристаллов, расширения газов, химических реакций, приводящих к увеличению числа молекул, особенно молекул в газообразном состоянии. ΔS < 0 для сжатия и конденсации газов, затвердевания жидкостей, реакций, сопровождающихся уменьшением числа молекул.

Пользуясь справочными данными, рассчитаем ΔS°298 реакции (а).

4Al (тв.) + 3PbO2 (тв.) = 2Al2O3 (тв.) + 3Pb (тв.)

S°298 4×28,32 3×76,6 2×50,99 3×64,89

ΔS°298 = 2×50,99+3×64,89–4×28,32–3×76,6 = –46,4 Дж/К.

Таким образом, энтропийный фактор препятствует протеканию этой реакции, а энергетический фактор (см. выше) – благоприятствует.

Идет ли реакция на самом деле? Чтобы ответить на этот вопрос, нужно одновременно рассмотреть оба фактора: энтальпийный и энтропийный.

Свободная энергия Гиббса. Критерии самопроизвольности протекания химических реакций.Одновременный учет энергетического и энтропийного факторов приводит к понятию еще одной полной функции состояния – свободной энергии. Если измерения проводятся при постоянном давлении, то величина называется свободной энергией Гиббса (в старой химической литературе – изобарно-изотермическим потенциалом) и обозначается ΔG.

Свободная энергия Гиббса связана с энтальпией и энтропией соотношением:

ΔG = ΔHTΔS

где T – температура в кельвинах. Изменение свободной энергии Гиббса в ходе реакции образования 1 моля вещества из простых веществ в стандартных состояниях называется свободной энергией образования ΔG° и обычно выражается в кДж/моль. Свободные энергии образования простых веществ приняты равными нулю. Чтобы найти изменение свободной энергии Гиббса в ходе реакции, нужно от суммы свободных энергий образования продуктов отнять сумму свободных энергий образования реагентов с учетом стехиометрических коэффициентов:

ΔG(реакции) = SΔG(продуктов) – SΔG(реагентов)

Самопроизвольным реакциям соответствует ΔG < 0. Если ΔG > 0, то реакция при данных условиях невозможна. Рассмотрим реакцию (a)

4Al (тв.) + 3PbO2 (тв.) = 2Al2O3 (тв.) + 3Pb (тв.)

ΔG°298 0 3×(–219,0) 2×(–1576,5) 0

ΔG°298 = 2×(–1576,5)–3×(–219,0) = –2496 кДж.

Существует и другой способ расчета ΔG реакции. Выше мы нашли значения ΔH и ΔS, тогда ΔG = ΔHTΔS

ΔG°298 = –2509,8 кДж – 298,15 К×(–0,0464 кДж/К) = –2496 кДж.

Таким образом, реакция (1) при стандартных условиях протекает самопроизвольно. Знак ΔG показывает возможность осуществления реакции только в условиях, для которых проводились вычисления. Для более глубокого анализа необходимо раздельное рассмотрение энергетического и энтропийного факторов. Имеется четыре возможных случая:

Таблица 7.3.

Определение возможности протекания химической реакции

Критерии

Возможность

ΔH < 0, ΔS > 0

Оба фактора благоприятствуют реакции. Как правило, такие реакции протекают быстро и полностью.

ΔH < 0, ΔS < 0

Энергетический фактор благоприятствует реакции, энтропийный препятствует. Реакция возможна при низких температурах.

ΔH > 0, ΔS > 0

Энергетический фактор препятствует реакции, энтропийный благоприятствует. Реакция возможна при высоких температурах.

ΔH > 0, ΔS < 0

Оба фактора препятствуют реакции. Такая реакция невозможна.

Если при стандартных условиях ΔG реакции > 0, но энергетический и энтропийный факторы направлены противоположно, то можно рассчитать, при каких условиях реакция станет возможной. ΔH и ΔS химической реакции сами по себе слабо зависят от температуры, если какие-нибудь из реагентов или продуктов не испытывают фазовых переходов. Однако в энтропийный фактор помимо ΔS входит также и абсолютная температура T. Таким образом, с повышением температуры роль энтропийного фактора повышается, и при температуре выше T » ΔHS реакция начинает идти в обратном направлении.

Если ΔG = 0, то система находится в состоянии термодинамического равновесия, т.е. ΔG – термодинамический критерий химического равновесия реакций (смотри вышеприведенные фазовые переходы воды).

Итак, анализируя функции состояния системы – энтальпию, энтропию и свободную энергию Гиббса – и их изменение в ходе химической реакции, можно определить, будет ли данная реакция происходить самопроизвольно.

← Предыдущая
Страница 1
Следующая →

Термодинамические системы: определение, классификация систем (изолированные, закрытые, открытые) и процессов (изотермические, изобарные, изохорные). Стандартное состояние.

У нас самая большая информационная база в рунете, поэтому Вы всегда можете найти походите запросы

Искать ещё по теме...

Эта тема принадлежит разделу:

Элементы химической термодинамики и кинетики

Термодинамические системы: определение, классификация систем (изолированные, закрытые, открытые) и процессов (изотермические, изобарные, изохорные). Стандартное состояние.

К данному материалу относятся разделы:

Основные понятия термодинамики: внутренняя энергия, работа, теплота

Первое начало термодинамики. Энтальпия. Стандартная энтальпия образования вещества. Стандартная энтальпия сгорания вещества. Стандартная энтальпия реакции.

Закон Гесса. Применение первого начала термодинамики к биосистемам.

Второе начало термодинамики. Энтропия. Энергия Гиббса. Прогнозирование направления самопроизвольно протекающих процессов в изолированной и закрытой системах.

Примеры экзергонических и эндергонических процессов, протекающих в организме. Принцип энергетического сопряжения

Классификация реакций, применяющихся в кинетике: гомогенные, гетерогенные, микрогетерогенные; простые и сложные (параллельные, последовательные, сопряженные, цепные)

Зависимость скорости реакции от концентрации. Молекулярность элементарного акта реакции. Порядок реакции. Кинетические уравнения реакций первого и нулевого порядков. Период полупревращения.

Зависимость скорости реакции от температуры. Температурный коэффициент скорости реакции и его особенности для биохимических процессов. Энергия активации.

Катализ гомогенный и гетерогенный. Ферментативный катализ. Уравнение Михаэлиса-Ментен.

Химическое равновесие. Обратимые и необратимые реакции.

Похожие материалы:

Этнические стереотипы

Приближенные методы решения уравнений

Решить уравнение – значит, установить имеет ли оно корни, если имеет, то сколько их и вычислить эти корни с нужной степенью точности Основные принципы функционирования ЭВМ. Основные структурные элементы современного компьютера, их функции и характеристики.

Теория проблемного обучения

Контрольная работа по учебной дисциплине «Педагогика». Что такое обучение. Функции обучения, история развития, признаки проблемного обучения. Методы проблемного обучения Проблемное обучение на современном этапе. Учебная проблема и проблемная ситуация.

Криминалистика

Понятие и предмет криминалистики. Общая, главная задача криминалистики – содействовать своими средствами и методами делу борьбы с преступностью. Научная теория криминалистической идентификации. Процесс расследования преступлений.

Ныряние за крылом в ротацию

"Ныряние за крылом в ротацию" -- это техника пилотирования, уместная только при мощных асимметричных сложениях на аппаратах классов "хай-перформанс" и "компетишен"