Пептиды и белки: структура, классификация и физико-химические свойства. растворы ВМС

ПЕПТИДЫ И БЕЛКИ: СТРУКТУРА, КЛАССИФИКАЦИЯ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА. РАСТВОРЫ ВМС

Пептиды. Электронное и пространственное строение пептидной связи.

В пептидной (амидной) группе -СО-NH- атом углерода находится в состоянии sp2-гибридизации. Неподеленная пара электронов атома азота вступает в сопряжение с π-электронами двойной связи С=О. С позиций электронного строения пептидная группа представляет собой трехцентровую p,π-сопряженную систему, электронная плотность в которой смещена в сторону более электроотрицательного атома кислорода. Атомы С, О и N, образующие сопряженную систему, находятся в одной плоскости. Распределение электронной плотности в амидной группе можно представить с помощью граничных структур (I) и (II) или смещения электронной плотности в результате +M- и - M-эффектов групп NH и C=O соответственно (III).

В результате сопряжения происходит некоторое выравнивание длин связей. Двойная связь С=О удлиняется до 0,124 нм против обычной длины 0,121 нм, а связь С-N становится короче - 0,132 нм по сравнению с 0,147 нм в обычном случае (рис. 1). Плоская сопряженная система в пептидной группе служит причиной затруднения вращения вокруг связи С-N (барьер вращения составляет 63-84 кДж/моль). Таким образом, электронное строение предопределяет достаточно жесткую плоскую структуру пептидной группы.

Как видно из рис. 1, α-атомы углерода аминокислотных остатков располагаются в плоскости пептидной группы по разные стороны от связи С-N, т. е. в более выгодном тpанс-положении: боковые радикалы R аминокислотных остатков в этом случае будут наиболее удалены друг от друга в пространстве.

Полипептидная цепь имеет удивительно однотипное строение и может быть представлена в виде ряда расположенных под углом друг к другу плоскостей пептидных

Рис. 1. Плоскостное расположение пептидной группы -CO-NH- и α-атомов углерода аминокислотных остатков

групп, соединенных между собой через α-атомы углерода связями Сα-N и Сα-Сsp2 (рис. 2). Вращение вокруг этих одинарных связей весьма ограничено вследствие затруднений в пространственном размещении боковых радикалов аминокислотных остатков. Таким образом, электронное и пространственное строение пептидной группы во многом предопределяет структуру полипептидной цепи в целом.

Рис. 2. Взаимное положение плоскостей пептидных групп в полипептидной цепи

Строение и номенклатура пептидов

Названия пептидов строят путем последовательного перечисления аминокислотных остатков, начиная с N-конца, с добавлением суффикса -ил, кроме последней С-концевой аминокислоты, для которой сохраняется ее полное название. Другими словами, названия аминокислот, вступивших в образование пептидной связи за счет «своей» группы СООН, оканчиваются в названии пептида на -ил: аланил, валил и т.п. (для остатков аспарагиновой и глутаминовой кислот используют названия «аспартил» и «глутамил» соответственно). Названия и символы аминокислот означают их принадлежность к l-ряду, если не указано иное (d или dl).

Иногда в сокращенной записи символами Н (как часть аминогруппы) и ОН (как часть карбоксильной группы) уточняется незамещенность функциональных групп концевых аминокислот. Этим способом удобно изображать функциональные производные пептидов; например, амид приведенного выше пептида по С-концевой аминокислоте записывается Н-Asn-Gly-Phe-ОH.

Пептиды содержатся во всех организмах. В отличие от белков, они имеют более разнородный аминокислотный состав, в частности, довольно часто включают аминокислоты d-ряда. В структурном отношении они также более разнообразны: содержат циклические фрагменты, разветвленные цепи и т.д.

2.

Кислотный и щелочной гидролиз пептидов.

Установление аминокислотного состава с помощью современных физико-химических методов.

Изучение первичной структуры белков имеет важное общебиологическое и медицинское значение. Изучая порядок чередования аминокислотных остатков в индивидуальных белках и сопоставляя эти знания с особенностями пространственного расположения молекулы, можно выявить общие фундаментальные закономерности формирования пространственной структуры белков.

Кроме того, многие генетические болезни - результат нарушения в аминокислотной последовательности белков. Информация о первичной структуре нормального и мутантного белка может быть полезна для диагностики и прогнозирования развития заболевания.

Установление первичной структуры белков включает 2 основных этапа:

определение аминокислотного состава изучаемого белка;

определение аминокислотной последовательности в белке.

1. Определение аминокислотного состава белка

Первый этап в определении первичной структуры белков заключается в качественной и количественной оценке аминокислотного состава данного индивидуального белка. Необходимо помнить, что для исследования нужно иметь определённое количество чистого белка, без примесей других белков или пептидов.

Кислотный гидролиз белка

Для определения аминокислотного состава необходимо провести разрушение всех пептидных связей в белке. Анализируемый белок гидролизуют в 6 мол/л НСl при температуре около 110°С в течение 24 ч. В результате такой обработки разрушаются пептидные связи в белке, а в гидролизате присутствуют только свободные аминокислоты. Кроме того, глутамин и аспарагин гидролизуются до глутаминовой и аспарагиновой кислот (т.е. разрывается амидная связь в радикале и от них отщепляется аминогруппа).

Разделение аминокислот с помощью ионообменной хроматографии

2.

Определение аминокислотной последовательности в белке

Отдельные представители пептидов: аспартам, глутатион.

Один из наиболее распространенных представителей трипептидов - глутатион - содержится в организме всех животных, в растениях и бактериях.

Цистеин в составе глутатиона обусловливает возможность существования глутатиона как в восстановленной, так и окисленной форме.

Глутатион участвует в ряде окислительно-восстановительных процессов. Он выполняет функцию протектора белков, т.е. вещества, предохраняющего белки со свободными тиольными группами SH от окисления с образованием дисульфидных связей -S-S-. Это касается тех белков, для которых такой процесс нежелателен. Глутатион в этих случаях принимает на себя действие окислителя и таким образом «защищает» белок. При окислении глутатиона происходит межмолекулярное сшивание двух трипептидных фрагментов за счет дисульфидной связи. Процесс обратим.

Аспартам - дипептид, состоящий из остатков L-аспарагиновой кислоты и метилового эфира L-фенилаланина, используется в качестве заменителя сахара – низкокалорийной пищевой добавки. Почти в 200 раз слаще сахарозы.

Первичная структура пептидов и белков.

Первичная структура пептидов и белков - это аминокислотная последовательность, т.е. порядок чередования α-аминокислотных остатков, связанных пептидными связями (-СО-NН-).

Условно считают, что пептиды содержат в молекуле до 100 (что соответствует молекулярной массе до 10 тыс.), а белки - более 100 аминокислотных остатков (молекулярная масса от 10 тыс. до нескольких миллионов).

В свою очередь, в группе пептидов принято различать олигопептиды (низкомолекулярные пептиды), содержащие в цепи не более 10 аминокислотных остатков, и полипептиды, в состав цепи которых входит до 100 аминокислотных остатков. Макромолекулы с числом аминокислотных остатков, приближающимся или немного превышающим 100, не разграничивают по понятиям полипептиды и белки, эти термины часто используют как синонимы.

Пептидную и белковую молекулу формально можно представить как продукт поликонденсации α-аминокислот, протекающей с образованием пептидной (амидной) связи между мономерными звеньями (рис. 5).

Конструкция полиамидной цепи одинакова для всего многообразия пептидов и белков. Эта цепь имеет неразветвленное строение и состоит из чередующихся пептидных (амидных) групп -СО-NH- и фрагментов -CH(R)-.

Один конец цепи, на котором находится аминокислота со свободной группой NH2, называют N-концом, другой - С-концом, на котором находится аминокислота со свободной группой СООН. Пептидные и белковые цепи записывают с N-конца.

Рис. 5. Принцип построения пептидной цепи

Вторичная структура белков (α- спираль и β- складчатая структура); стабилизация в пространстве.

Для высокомолекулярных полипептидов и белков наряду с первичной структурой характерны и более высокие уровни организации, которые называют вторичной, третичной и четвертичной структурами.

Вторичная структура описывается пространственной ориентацией основной полипептидной цепи, третичная - трехмерной архитектурой всей белковой молекулы. Как вторичная, так и третичная структура связана с упорядоченным расположением макромолекулярной цепи в пространстве.

Расчетным путем было показано, что для полипептидной цепи одной из наиболее выгодных конформаций является расположение в пространстве в виде правозакрученной спирали, названной α-спиралью (рис. 6, а).

Пространственное расположение α-спирализованной полипептидной цепи можно представить, вообразив, что она обвивает некий цилиндр (см. рис. 6, б).

Рис. 6. α-Спиральная конформация полипептидной цепи

На один виток спирали в среднем приходится 3,6 аминокислотного остатка, шаг спирали составляет 0,54 нм, диаметр - 0,5 нм. Плоскости двух соседних пептидных групп располагаются при этом под углом 108°, а боковые радикалы аминокислот находятся на наружной стороне спирали, т.е. направлены как бы от поверхности цилиндра.

Основную роль в закреплении такой конформации цепи играют водородные связи, которые в α-спирали образуются между карбонильным атомом кислорода каждого первого и атомом водорода NН-группы каждого пятого аминокислотного остатка.

Водородные связи направлены почти параллельно оси α-спирали. Они удерживают цепь в закрученном состоянии.

Обычно белковые цепи спирализованы не полностью, а лишь частично. В таких белках, как миоглобин и гемоглобин, содержатся довольно длинные α-спиральные участки, например цепь миоглобина спирализована на 75%. Во многих других белках доля спиральных участков в цепи может быть небольшой.

Другим видом вторичной структуры полипептидов и белков является β-структура, называемая также складчатым листом, или складчатым слоем. В складчатые листы укладываются вытянутые полипептидные цепи, связываемые множеством водородных связей между пептидными группами этих цепей (рис. 7). Во многих белках одновременно содержатся α-спиральные и β-складчатые структуры.

Рис. 7. Вторичная структура полипептидной цепи в виде складчатого листа (β-структура)

Третичная структура белков; взаимодействия, стабилизирующие третичную структуру.

Третичная структура белка определяет общее расположение его полипептидной цепи в пространстве. Полагают, что в формировании и стабилизации третичной структуры белковой молекулы решающая роль принадлежит взаимодействию боковых заместителей аминокислот, которые сближаются в пространстве за счет изгибов полипептидной цепи. Третичная структура стабилизируется за счет формирования водородных, ионных (солевых), гидрофобных связей и дисульфидных мостиков.

Третичная структура белковой молекулы возникает совершенно автоматически в результате самоорганизации полипептидной цепи в соответствии с ее первичной и вторичной структурами, а также с составом окружающего раствора. Движущей силой, свертывающей полипептидную цепь белка в строго определенное трехмерное образование, является взаимодействие аминокислотных радикалов между собой и с молекулами окружающего раствора. При этом в водных растворах гидрофобные заместители вталкиваются внутрь белковой молекулы, образуя там сухие зоны («жирные капли»), а гидрофильные - ориентируются в сторону водной среды. В некоторый момент достигается энергетически выгодная конформация молекулы для водной среды, и такая конформация белковой молекулы стабилизируется. При этом энтропия полипептидной цепи уменьшается, а энтропия системы в целом (полипептидная цепь + водная среда) остается постоянной или возрастает. Таким образом, с позиции II закона термодинамики стабилизацию третичной структуры белка в водной среде обеспечивает стремление водного окружения молекулы белка перейти в состояние с максимальной энтропией.

Рис. 8. Третичная структура миоглобина

Третичная структура белка, по сравнению с его вторичной структурой, еще более чувствительна к внешним воздействиям. Поэтому действие слабых окислителей, смена растворителей, изменения ионной силы, рН среды и температуры нарушают третичную структуру белков, а, следовательно, и их нативные свойства.

Особенности структуры коллагена, белков эмали и дентина.

Фибриллярные белки имеют вытянутую, нитевидную структуру, в которой соотношение продольной и поперечной осей составляет более 1:10. К фибриллярным белкам относят коллагены, эластин, кератин, выполняющие в организме человека структурную функцию, а также миозин, участвующий в мышечном сокращении, и фибрин - белок свёртывающей системы крови. На примере коллагенов и эластина рассмотрим особенности строения этих белков и связь их строения с функцией.

1.

Строение и функции коллагенов

2.

Строение и функция эластина

Физико-химические свойства белков: растворимость, ионизация, гидратация, денатурация и ренатурация.

Гидратация и растворимость белков

.

 

Ионизация белка и зависимость заряда от рН среды

.

Способность белков к денатурации

.

Растворы ВМС как лиофильные коллоидные растворы: особенности образования мицелл. Липосомы.

Устойчивость и разрушение растворов биополимеров. Высаливание и солюбилизация.

Особенности растворов ВМС: набухание и растворение. Зависимость величины набухания от различных факторов. Изоэлектрическая точка и методы ее определения.

Набухание – самопроизвольный процесс поглощения полимером растворителя, сопровождаемый увеличением объема и массы взятого образца ВМС.

Начальная стадия растворения ВМС заключается в диффузии молекул растворителя в объем полимера. Проникновение молекул растворителя в объем биополимера сопровождается увеличением его объема и массы, т.е. его набуханием.

Количественной мерой набухания является степень набухания а, которая может иметь объемное или массовое выражение:

где V0, V, m0, m - соответственно объемы и массы исходного и набухшего полимера.

Более точным является определение а по ее массовому выражению, так как в этом случае результаты измерений не зависят от явления контракции. Контракция заключается в том, что объем раствора (смеси) двух жидкостей оказывается меньше, чем сумма объемов взятых жидкостей.

В зависимости от структуры полимера и температуры набухание может быть ограниченным или неограниченным (рис. 13). При ограниченном набухании (1) а достигает предельного значения, после чего набухание не зависит от времени (желатин в холодной воде). Для неограниченного набухания характерна зависимость (2), проходящая через максимум, после чего падает до нуля в результате постепенного растворения полимера.

Рис. 13. Кривые ограниченного (1) и неограниченного (2) набухания

Ограниченность или неограниченность набухания определяются соотношением энергий связей в полимере с энергией сольватации и энтропийным фактором. В линейных и разветвленных полимерах молекулы связаны ван-дер-ваальсовыми силами, энергия этих связей невелика, поэтому энергия сольватации и энтропийный фактор уже при комнатной температуре превышают их. При таких условиях набухание идет неограниченно. Если между цепями полимера имеются химические связи, то для их разрыва недостаточно бывает энергии сольватации и энтропийного фактора. Набухание протекает ограниченно, и полимер превращается в студень.

В основе процесса набухания лежит сольватация макромолекулярных цепей. О сольватационном механизме набухания свидетельствуют выделение теплоты набухания и контракция (уменьшение общего объема системы). В то время как при набухании объем полимера всегда увеличивается, объем всей системы (полимер + растворитель) обычно уменьшается. Это особенно заметно при набухании полярных полимеров в полярных растворителях. Причиной контракции является упорядоченная ориентация молекул растворителя в сольватных слоях. Набухание, как и сольватация, специфично, так как полимер набухает в растворителе, соответствующем его природе. В процессе набухания происходит односторонняя диффузия молекул воды в полимер. Это объясняется тем, что крупные макромолекулы, связанные в надмолекулярные структуры, практически не могут переходить в растворитель, а мелкие и хорошо диффундирующие молекулы воды легко проникают в полимер, увеличивая его объем. При набухании отдельные молекулы надмолекулярных структур гидратируются, межмолекулярное взаимодействие значительно ослабевает, в результате чего становится возможной диффузия макромолекул в растворитель (рис. 14).

Рис. 14. Взаимодействие растворителя с полимером: 1 - межструктурное набухание; 2 - внутриструктурное набухание; 3 – растворение

Набухание является экзотермическим процессом, поэтому в соответствии с принципом Ле Шателье степень набухания увеличивается при увеличении давления и уменьшении температуры, однако скорость набухания при уменьшении температуры уменьшается, так как при более низких температурах диффузия протекает менее интенсивно.

Процесс набухания включает две стадии. На первой происходит выделение теплоты набухания наблюдается контракция системы, однако не достигает высоких значений. Вторая стадия почти не сопровождается контракцией и выделением теплоты, но характеризуется увеличением а и объема набухающего полимера.

При набухании полимеров их объем увеличивается в 10-15 раз, и возникает давление набухания, достигающее иногда сотен мегапаскалей. Силу давления при набухании крахмала и белков гороха раньше использовали для разъединения костей черепа при приготовлении анатомических препаратов. Давление набухания эквивалентно внешнему давлению, приложение которого могло бы остановить увеличение объема набухающего полимера.

Степень набухания полимера и его способность к растворению зависят от гибкости полимерных цепей. Так, волокна незрелого коллагена (в котором еще не установились поперечные ковалентные «сшивки») достаточно хорошо набухают и могут переходить в раствор, тогда как волокна зрелого коллагена нерастворимы. На интенсивность процесса набухания влияют также температура, давление, присутствие электролитов и величина pH.

Рис. 15. График зависимости степени набухания белка от pH среды

Влияние pH среды на набухание особенно выражено для полиамфолитов. Зависимость степени набухания белка от pH среды выражается кривой с двумя максимумами и одним минимумом, положение которого соответствует изоэлектрической точке (рис. 15). Минимум набухания белков лежит в области их изоэлектрической точки рН = рI, а по обе стороны от этой точки располагаются максимумы набухания. В изоэлектрическом состоянии конформация белка наиболее плотная, поэтому степень его гидратации и, следовательно, степень набухания минимальны. В более кислой и более щелочной средах белок образует катионную или анионную формы, и его структура разрыхляется вследствие электростатического отталкивания одноименных зарядов.

С течением времени число связей между макромолекулами и внутри них возрастает, и степень набухания биополимера снижается. Постепенное старение живого организма сопровождается замедлением процессов обмена; вследствие утраты клетками мышц и кожи способности к набуханию образуются морщины. Примером влияния pH на набухание является отек кожи, вызываемый действием муравьиной кислоты, содержащейся в крапиве и выделениях муравьев.

Экспериментально установлено, что на набухание биополимеров анионы оказывают большее влияние, чем катионы. Анионы по степени влияния на набухание белков располагаются в лиотропный ряд (ряд Гоффмейстера):

Белки относятся к полиамфолитам, т.е. к веществам, способным в зависимости от условий проявлять свойства, как оснований, так и кислот. Остатки ионогенных аминокислот (аспарагиновой и глутаминовой кислот, аргинина, лизина и гистидина) могут находиться как в протонированной, так и в депротонированной формах. Состояние, при котором суммарный заряд полиамфолита равен нулю, называется изоэлектрическим. Значение pH раствора, соответствующее изоэлектрическому состоянию, называется изоэлектрической точкой (pI). В среде с большей кислотностью, чем в изоэлектрической точке (pH < pI), ионизация карбоксильных групп подавлена, вследствие чего белок находится в форме макрокатионов, положительный заряд которых обусловлен наличием -R-NH3+-групп. В среде с меньшей кислотностью, чем в изоэлектрической точке (pH > pI), карбоксильные группы депротонированы, вследствие чего белок находится в форме макроанионов, отрицательный заряд которых обусловлен наличием -R-СОО- -групп.

Возникновение электрического заряда в состоянии, отличающемся от изоэлектрического, обусловливает электрофоретическую подвижность белков. Направление движения макромолекул белков в электрическом поле (к катоду или аноду) зависит от значения pH. Белки, как и все амфолиты, имеют определенную величину изоэлектрической точки.

При pH < pI протонируются основные группы в боковых цепях; белок находится в форме макрокатиона и перемещается к катоду. При pH = pI белок находится в электронейтральной форме (макромолекула) и в электрическом поле не перемещается. При pH > pI белок перемещается к аноду, так как находится в форме макроаниона вследствие депротонирования кислотных групп в боковых цепях. Макроанионы различаются электрофоретической подвижностью, которая зависит от размера иона и его заряда. Изменяя pH поддерживающей среды, можно добиться значительного изменения подвижности макроаниона:

она будет тем больше, чем больше разница между pH и pI. Например, для белка с pI = 5 при pH= 9 степень депротонированности боковых ионогенных групп больше, чем при pH = 7. Больший заряд макроаниона при pH = 9 обусловливает его большую подвижность (рис. 16).

Рис. 16. Зависимость подвижности частиц белка (pI = 5) в электрическом поле от pH среды

Описанные закономерности используются в электрофоретическом методе анализа белков. С помощью электрофореза можно разделить на отдельные фракции сложные смеси белков. Некоторые заболевания сопровождаются изменением состава и соотношения белков, что отражается на электрофореграммах.

Аномальная вязкость растворов ВМС. Вязкость крови и других биологических жидкостей. Осмотическое давление растворов биополимеров.

Аномальная вязкость растворов ВМС

Вязкость крови и других биологических жидкостей

Мембранное равновесие Доннана

Застудневание растворов ВМС. Свойства студней: синерезис и тиксотропия.

Онкотическое давление плазмы и сыворотки крови

← Предыдущая
Страница 1
Следующая →

Файл

zanyatie_14.docx

zanyatie_14.docx
Размер: 606.5 Кб

.

Пожаловаться на материал

Третичная структура белков Вторичная структура белков Отдельные представители пептидов: аспартам, глутатион. строение пептидной связи

У нас самая большая информационная база в рунете, поэтому Вы всегда можете найти походите запросы

Искать ещё по теме...

Похожие материалы:

Этапы развития психологии

История античной психологии. История развития психологической мысли в эпоху феодализма и в период Возрождения. Развитие психологической мысли в 17 веке и в эпоху Просвещения (18 век). Зарождение психологии как науки. Возникновение психологии в России.

Особенности управления в таможенных органах

Перед таможенной службой Российской Федерации в настоящее время стоит ряд важнейших задач. Развитие таможенной системы в нашей стране.

Выбор автоматических выключателей

Пояснительная записка к курсовому проекту по дисциплине «Электрические и электронные аппараты» по теме: «Выбор автоматических выключателей» В ходе выполнения курсового проекта были выбраны выключатель типов ВА 55-41 и ВА 61F29 для данной электрической сети предприятия.

Правовые аспекты информационной деятельности. Выполнение ввода вывода информации с носителей данных, каналов связи

Самостоятельная работа. Программы по юридическому статусу можно разделить на три большие группы: лицензионные, условно бесплатные (shareware) и свободно распространяемые программы (freeware). Архитектура ЭВМ включает в себя аппаратуру ввода-вывода, состоящую из иерархической структуры каналов, устройств управления и периферийных устройств (ПУ). ПУ делятся на устройства ввода-вывода и запоминающие устройства. И те, и другие могут осуществлять ввод и/или вывод.

Социальная психология

Педагогическое общение. Понятия субъекта, личности, индивида, индивидуальности. Теории личности. Социализация личности. Психологическая защита личности. Социальная группа.

Сохранить?

Пропустить...

Введите код

Ok