Насос и компрессоры. Ответы

Территория рекламы

Билет 1

Гидравлический двигатель (гидродвигатель) — гидравлическая машина, предназначенная для преобразования гидравлической энергии в механическую. К гидродвигателям относят  HYPERLINK "https://ru.wikipedia.org/wiki/%D0%93%D0%B8%D0%B4%D1%80%D0%BE%D0%BC%D0%BE%D1%82%D0%BE%D1%80" \o "Гидромотор" гидромоторы, гидроцилиндры, гидротурбины и поворотные гидродвигатели.

Гидромоторы сообщают выходному звену вращательное движение на неограниченный угол поворота.

Гидроцилиндры сообщают выходному звену возвратно-поступательное движение.

Поворотные гидродвигатели сообщают выходному звену вращательное движение на ограниченный угол поворота меньший 360°.

Гидравлические двигатели бывают объёмными и гидродинамическими. На практике чаще используют объёмные гидродвигатели, так как при той же преобразуемой мощности они компактнее и меньше по массе. Конструкции объёмных гидромоторов подобны конструкциям соответствующих объёмных насосов. Кроме того, объёмные гидромоторы имеют свои аналоги среди  HYPERLINK "https://ru.wikipedia.org/wiki/%D0%9F%D0%BD%D0%B5%D0%B2%D0%BC%D0%BE%D0%BC%D0%BE%D1%82%D0%BE%D1%80" \o "Пневмомотор" пневмомоторов. Однако не каждый насос может использоваться в режиме гидромотора. Например, поршневые насосы (которые не следует путать с роторно-поршневыми) могут работать только в качестве насоса из-за наличия клапанной системы распределения.

Гидравли́ческие маши́ны (гидромаши́ны) — одна из групп гидравлических механизмов. Термин «гидравлические машины» часто используют как обобщающий для насосов и  HYPERLINK "https://ru.wikipedia.org/wiki/%D0%93%D0%B8%D0%B4%D1%80%D0%BE%D0%B4%D0%B2%D0%B8%D0%B3%D0%B0%D1%82%D0%B5%D0%BB%D1%8C" \o "Гидродвигатель" гидродвигателей. Желательность такого обобщения вытекает из свойстваобратимости насосов и гидродвигателей. Это свойство заключается в том, что гидравлическая машина может работать как в качестве насоса (генератора гидравлической энергии), так и в качестве гидродвигателя. Однако, в отличие от электрических машин, обратимость гидравлических машин не является полной: для реализации обратимости необходимо внесение изменений в конструкцию машины, и кроме того, не каждый насос может работать в качестве гидродвигателя, и не каждый гидродвигатель может работать в режиме насоса.

Номинальная мощность, отдаваемая насосом в гидросистему или потребляемая гидродвигателем из гидросистемы, может быть определена по формуле:

где  — номинальная подача насоса (для гидродвигателя — номинальный расход рабочей жидкости),  — номинальное давление на выходе из насоса (для гидродвигателя — номинальное давление рабочей жидкости на входе в гидродвигатель).

Термин «гидравлические машины» не следует путать с термином « HYPERLINK "https://ru.wikipedia.org/w/index.php?title=%D0%93%D0%B8%D0%B4%D1%80%D0%BE%D1%84%D0%B8%D1%86%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%BD%D1%8B%D0%B5_%D0%BC%D0%B0%D1%88%D0%B8%D0%BD%D1%8B&action=edit&redlink=1" \o "Гидрофицированные машины (страница отсутствует)" гидрофицированные машины». Под последними обычно понимаются машины, привод рабочих органов которых выполнен на базе гидравлического привода.

Гидравлические машины являются необходимой частью гидропривода.

Насо́с — гидравлическая машина, преобразующая механическую энергию приводного двигателя или мускульную энергию (в ручных насосах) в энергию потока жидкости, служащая для перемещения и создания напора жидкостей всех видов, механической смеси жидкости с твёрдыми и коллоидными веществами или сжиженных газов[прим 1]. Разность давлений жидкости на выходе из насоса и присоединённом трубопроводе обусловливает её перемещение.

Условное графическое обозначение нереверсивного нерегулируемого насоса

Неполная классификация насосов по принципу действия и конструкции выглядит следующим образом:

импеллерные (ламельные) насосы

пластинчатые (шиберные) насосы

водокольцевой насос

шестерённые насосы

аксиально-плунжерные насосы

радиально-плунжерные насосы

центробежно-шнековые (дисковые, оседиагональные) насосы

винтовые (шнековые)

поршневые

центробежные

осевые

вихревые

роторные

струйные

синусоидальные

перистальтические

мембранные

абсорбционные

гидротаранный насос

магниторазрядные

БИЛЕТ 2

Передача энергии потоку жидкости с вала центробежной машины осуществляется рабочим колесом с кривыми (иногда профилированными) лопастями (рис. 2.1 и 2.2). Внутренняя полость рабочего колеса (межлопастные каналы) образуются двумя фасонными дисками 1 и2 и несколькими (обычно кривыми) лопастями5. Диск1, называемыйосновным иливедущим, составляет одно целое со ступицей, служащей для жесткой посадки на вал насоса. В вентиляторах основной диск и ступица изготовляются раздельно и жестко соединяются заклепками или сваркой. Диск 2 называется покрывающим илипередним; он составляет одно целое с лопастями в насосах (изготовление колеса - отливкой), а в вентиляторах соединяется с лопастями сваркой или заклепыванием. Жидкость (газ), поступая в межлопастные каналы, вращается вокруг оси0 - 0 рабочего колеса, под влиянием центробежных сил перемещается к периферии колеса и выбрасывается в канал, окружающий колесо. Работа центробежных сил на пути от входа в межлопастные каналы до выхода из них приводит к увеличению энергии потока.

    Основной рабочий орган – лопаточный  аппарат.

•          Нагнетательный патрубок соединен со всасывающим рабочей полостью насоса.

•          Подача перекачиваемой жидкости равномерная.

•          Количество жидкости, подаваемой насосом, зависит от развиваемого напора.

•          Максимально развиваемый напор ограничен

Схема центробежного насоса

БИЛЕТ 3

В объемных насосах взаимодействие рабочего органа с жидкостью происходит в замкнутых объемах (рабочих камерах), которые попеременно сообщаются с полостями всасывания и нагнетания. При работе насоса такая камера сначала заполняется жидкостью из полости всасывания, затем она отсоединяется от полости всасывания и соединяется с полостью нагнетания. Когда рабочая камера соединена с полостью нагнетания, происходит вытеснение жидкости. Далее она вновь соединяется с полостью всасывания. Этот процесс повторяется многократно. Рабочий орган, обеспечивающий заполнение камеры жидкостью, а потом ее вытеснение, называютвытеснителем.

К этой группе относят следующие насосы:

Поршневые и плунжерные, в которых периодическое силовое воздействие на протекающую через насос жидкость оказывают поршень или плунжер, совершающие возвратно-поступательное движение в рабочей камере;

Роторные, в которых периодическое силовое воздействие на протекающую через насос жидкость оказывают поверхности шестерен или винтовых канавок, расположенных на периферии вращающегося ротора;

Крыльчатые, в которых периодическое силовое воздействие на протекающую через насос жидкость оказывает пластина (крыло), совершающая возвратно-поворотное движение в рабочей камере;

Ленточные и шнуровые водоподъемники, в которых силовое воздействие на жидкость в поверхностных капиллярах (являются рабочей камерой) бесконечной ленты или бесконечного шнура, двигающихся по двум шкивам (один опущен в воду, а другой расположен на поверхности земли), оказывает подъемная сила, возникающая в результате принудительного вращения одного из шкивов;

Гидротараны, в которых периодическое силовое воздействие на воду в рабочей камере оказывает гидравлический удар, возникающий в подводящем трубопроводе при резкой остановке жидкости в нем.

В группу объемных насосов можно включить диафрагменные и шнековые насосы, черпаковые водоподъемники, водоподъемные колеса. В основу их действия положены одни и те же принципы. 

бщие свойства объёмных насосов:

Цикличность рабочего процесса и связанные с ней порционность и пульсации подачи и давления. Подача объёмного насоса осуществляется не равномерным потоком, а порциями.

Герметичность, то есть постоянное отделение напорной  HYPERLINK "https://ru.wikipedia.org/wiki/%D0%93%D0%B8%D0%B4%D1%80%D0%BE%D0%BB%D0%B8%D0%BD%D0%B8%D1%8F" \o "Гидролиния" гидролинии от всасывающей (лопастные насосы герметичностью не обладают, а являются проточными).

Самовсасывание, то есть способность объёмных насосов создавать во всасывающей гидролинии вакуум, достаточный для подъёма жидкости вверх во всасывающей  HYPERLINK "https://ru.wikipedia.org/wiki/%D0%93%D0%B8%D0%B4%D1%80%D0%BE%D0%BB%D0%B8%D0%BD%D0%B8%D1%8F" \o "Гидролиния" гидролинии до уровня расположения насоса(лопастные насосы не являются самовсасывающими).

Независимость давления, создаваемого в напорной  HYPERLINK "https://ru.wikipedia.org/wiki/%D0%93%D0%B8%D0%B4%D1%80%D0%BE%D0%BB%D0%B8%D0%BD%D0%B8%D1%8F" \o "Гидролиния" гидролинии, от подачи жидкости насосом

БИЛЕТ 4

Патрубок (точка в гидравлической системе, в которой установлен насос), из которого насос забирает жидкость, называется всасывающим, патрубок, в который нагнетает, — напорным. Патрубки могут находиться на разной высоте, при этом часть энергии насос тратит на преодоление разницы гидростатических давлений между высотой напора z1 и высотой всаса z0 (это может быть и отрицательная величина).

Напор насоса H — это приращение механической энергии единицы массы жидкости между его выходом и входом. Обычно мерой энергии служит высота столба перекачиваемой жидкости (имеющей удельный вес γ при ускорении свободного паденияg): для i-й точки с давлением pi и скоростью жидкости vi

соответственно, напор насоса

Подача — количество жидкости, подаваемое насосом за единицу времени. Может рассматриваться массовая подача G или объёмная подача QG = γQ.

Мощность N — потребление насосом энергии за единицу времени. Полезная мощность Nh — это приращение энергии всего потока жидкости в насосе: . Внутренняя мощность насоса Ni — это его полная мощность за исключением потерь на трение механических частей насоса, т. е. мощность, сообщаемая жидкости в виде тепловой и механической энергии.

Соотношение полезной и подведённой мощности — это коэффициент полезного действия насоса η = Nh/N. При этом следует наблюдать за размерностью величин: если, например, напор выражен в метрах, а подача в килограммах в секунду, то мощность в киловаттах вычисляется по формуле:

N[кВт] = G[кг]H[м]102η[безразм.]. Потери в насосе могут быть гидравлическими (затраты на преодоление гидравлических сопротивлений внутри насоса), объёмными (сокращение подачи насоса по сравнению с подачей рабочего органа) и механическими (трение деталей насоса о жидкость — внутренние механические потери, трение их друг об друга в подшипниках и т. д. — внешние). Учитываются, соответственно, гидравлическим КПД ηг, объёмным ηоб и механическим, разделяющимся на внутренний и внешний, ηм=ηмiηмe. η=ηгηобηм; Ni = Nηмe.

Минимальный избыточный напор всасывания H0u min над давлением парообразования жидкости ps — запас механической энергии жидкости на входе в насос, необходимый для того, чтобы в насосе не возникла кавитация. Избыточный напор всасывания определяется как

где p0a — давление на входе в насос, отнесённое к уровню оси насоса. На практике величину необходимого кавитационного запаса насоса принимают с некоторым коэффициентом запаса φ = 1,2…1,4. Допустимая высота всасывания определяется с учётом давления на поверхности жидкости в резервуаре, откуда она забирается, pb и сопротивления (в линейных единицах) всасывающих трубопроводов hc как

Для открытых сосудов pb — это атмосферное давление, для закрытых сосудов с кипящей жидкостью .

БИЛЕТ 5

Полезную, или теоретическую, мощность насоса N (кВт) определяют как произведение весовой подачи на напор:

где pg— удельный вес жидкости, Н/м3; Q— объемная подача насоса, м/с; H— напор, развиваемый насосом, м.

Полезная (или теоретическая) мощность насоса Nп всегда меньше затрачиваемой мощности или мощности, подводимой к валу насоса N, так как в насосе неизбежно возникновение потерь энергии:

Общие потери (гидравлические, объемные и механические), возникающие при передаче энергии перекачиваемой жидкости, учитывает полный коэффициент полезного действия.

Гидравлическими потерями называют потери энергии на преодоление гидравлических сопротивлений при движении жидкости от входа в насос до выхода из него. Эти потери энергии учитываются гидравлическим КПД

где Н— требуемый напор насоса; h— потери напора внутри насоса.

В современных насосах КПД = 0,8...0,95.

Объемными потерями называют потери энергии, возникающие в результате утечки жидкости из нагнетательной части насоса во всасывающую. Например, через рабочее колесо выходит жидкость в количестве Qк, основная часть которой по ступает в напорный патрубок насоса, а другая часть возвращается на всасывание через зазоры в уплотнении между корпусом насоса и колесом. При этом теряется часть энергии. Эти потери оценивают объемным КПД насоса:

где Q  подача насоса; Qк  — расход жидкости, проходящей через колесо насоса, в современных насосах 0,9...0,98.

Потери энергии, возникающие вследствие трения в подшипниках, сальниках, а также вследствие трения наружной поверхности рабочего колеса о жидкость, называют механическими потерями. Эти потери учитываются механическим КПД:

где N— мощность, подводимая к валу насоса; Nтр — потери мощности на преодоление сопротивления трения.

Механический КПД может составлять 0,95...0,98. Полный КПД насоса представляет собой произведение всех трех коэффициентов полезного действия:

и характеризует совершенство конструкции насоса и степень его изношенности.

Максимальный КПД крупных современных насосов достигает 0,9 и более, а КПД малых насосов может составлять 0,6...0,7.

На КПД насоса влияет коэффициент быстроходности. Общий характер этого влияния показывают кривые, приведенные на рис.  из которых следует, что максимальные КПД соответствуют диапазону ns = 140...220 об/мин, причем существенное влияние оказывает подача Q, т. е. размер насоса. С ростом подачи Q увеличивается и КПД насоса.

Влияние быстроходности на характеристики (а)

При непосредственном соединении вала насоса с валом электродвигателя мощность Nдв (кВт) электродвигателя

где К— коэффициент запаса, учитывающий случайные перегрузки двигателя; при мощности двигателя до 2 кВт рекомендуется принимать коэффициент К равным 1,5; от 2 до 5 кВт— 1,5...1,25; от 5 до 50 кВт- 1,25.. 1,15; от 50 до 100 кВт-1,15...1,05; более 100 кВт- 1,05.

Если вал насоса соединен с валом двигателя редуктором или ременной передачей, то мощность двигателя Nдв = KN/h пр , где h пр— КПД привода или редуктора.

БИЛЕТ 6

Буровой насос — насос, применяемый на бурильных установках с целью обеспечения циркуляции бурового раствора в скважине. Для промывки используется высокое давление, которое создаёт этот насос. Буровой насос бывает двух-и трёхцилиндровый. Основное предназначение бурового насоса - это обеспечить циркуляцию бурового шлама и предотвратить его оседание в процессе бурения, а также подъём разбуриваемой породы на поверхность. Буровой насос очищает забой и скважину от породы.

ОСНОВНЫЕ ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К БУРОВЫМ НАСОСАМ

Буровые насосы предназначены для нагнетания в скважину промывочной жидкости с целью: очистки забоя и ствола от выбуренной породы (шлама) и выноса ее на дневную поверхность; охлаждения и смазки долота; создания гидромониторного эффекта при бурении струйными долотами; приведения в действие забойных гидравлических двигателей.

Исходя из назначения и условий эксплуатации, к буровым насосам предъявляют следующие основные требования:

•                подача насоса должна быть регулируемой в пределах, обеспечивающих эффективную промывку скважины;

•                мощность насоса и количество насосов должно быть достаточным для промывки скважины и работы забойных гидравлических двигателей;

•                скорость движения промывочной жидкости на выходе из насоса должна быть равномерной для устранения инерционных нагрузок и пульсаций давления,

вызывающих осложнения в бурении, дополнительные энергетические затраты и усталостные разрушения;

•                насосы должны быть приспособлены для работы с абразиво- и маслосодержащими коррозионно-активными промывочными растворами различной плотности;

•                узлы и детали, контактирующие с промывочным раствором, должны обладать достаточной долговечностью и быть приспособленными к удобной и быстрой замене при выходе из строя;

•                крупногабаритные узлы и детали должны быть снабжены устройствами для надежного захвата и перемещения при ремонте и техническом обслуживании;

•           узлы и детали приводной части должны быть защищены от промывочного раствора и доступны для осмотра и технического обслуживания;

•           насосы должны быть приспособлены к транспортировке в собранном виде на далекие и близкие расстояния и перемещению волоком в пределах буровой;

•           конструкция насосов должна допускать правое и левое расположение приводных двигателей;

•                надежность и долговечность насосов должны сочетаться с их экономичностью и безопасностью эксплуатации.

БИЛЕТ 7

Штанговые скважинные насосные установки (ШСНУ) предназначены для подъема пластовой жидкости из скважины на дневную поверхность.

Свыше 70% действующего фонда скважин оснащены глубинными скважинными насосами. С их помощью добывается в стране около 30% нефти.

В настоящее время ШСНУ, как правило, применяют на скважинах с дебитом до 30...40 м3 жидкости в сутки, реже до 50 м3 при средних глубинах подвески 1000...1500 м. В неглубоких скважинах установка обеспечивает подъем жидкости до 200 м3/сут.

В отдельных случаях может применяться подвеска насоса на глубину до 3000 м.

Широкое распространение ШСНУ обусловливают следующие факторы:

простота ее конструкции;

простота обслуживания и ремонта в промысловых условиях;

удобство регулировки;

возможность обслуживания установки работниками низкой квалификации;

малое влияние на работу ШГНУ физико-химических свойств откачиваемой жидкости;

высокий КПД;

возможность эксплуатации скважин малых диаметров.

Установка состоит из:

привода

устьевого оборудования

насосных штанг

глубинного насоса

вспомогательного подземного оборудования

насосно-компрессорных труб.

Привод предназначен для преобразования энергии двигателя в возвратно-поступательное движение колонны насосных штанг.

В большинстве ШСНУ (рис. 4.21) в качестве привода применяют балансирные станки-качалки. Балансирный станок-качалка состоит из рамы 2, установленной на массивном фундаменте 1. На раме смонтированы: стойка 9, на которой с помощью шарнира укреплен балансир 10, имеющий на одном конце головку 12 на другом - шарнир, соединяющий его с шатуном 7. Шатун соединен с кривошипом 5, укрепленном на выходном валу редуктора. Входной вал редуктора посредством клиноременной передачи соединен с электродвигателем 3. Головка балансира соединена с колонной штанг с помощью канатной подвески 13.

Рис. 4.21. Штанговая скважинная насосная установка: 1 — фундамент; 2 - рама; 3 — электродвигатель; 4 - цилиндр; 5 - кривошип; 6 — груз; 7 - шатун; 8 - груз; 9 - стойка; 10 - балансир; 11 - механизм фиксации головки балансира; 12 - головка балансира; 13 - канатная подвеска; 14 - полированная штанга; 15 - оборудование устья скважины; 16 - обсадная колонна; 17 - насосно-компрессорные трубы; 18 - колонна штанг; 19 - глубинный насос; 20 - газовый якорь; 21 - уплотнение полированной штанги; 22 - муфта трубная; 23 - муфта штанговая; 24 - цилиндр глубинного насоса; 25 - плунжер насоса; 26 - нагнетательный клапан; 27 - всасывающий клапан

Устьевое оборудование I предназначено для герметизации полированного штока 14 с помощью сальника 21, направления потока жидкости потребителю, подвешивания насосно-компрессорных труб, замера затрубного давления и проведения исследовательских работ в скважине.

Колонна насосных штанг II соединяет канатную подвеску насоса с плунжером глубинного насоса. Колонна собирается из отдельных штанг 18. Штанги имеют длину по 8...10 м, диаметр 16...25 мм и соединяются друг с другом посредством муфт 23. Первая, верхняя штанга 14 имеет поверхность, обработанную по высокому классу чистоты, и называется полированной, иногда сальниковой штангой.

Колонна насосно-компрессорных труб II служит для подъема пластовой жидкости на поверхность и соединяет устьевую арматуру с цилиндром глубинного насоса. Она составлена из труб 17 длиной по 8...12 м, диаметром 38...100 мм, соединенных трубными муфтами 22. В верхней части колонны установлен устьевой сальник, герметизирующий насосно-компрессорные трубы. Через сальник пропущена полированная штанга. Оборудование устья скважины имеет отвод, по которому откачиваемая жидкостъ направляется в промысловую сеть.

Глубинный штанговый насос III представляет собой насос одинарного действия. Он состоит из цилиндра 24, прикрепленного к колонне насосно-компрессорных труб, плунжера 25 соединенного с колонной штанг. Нагнетательный клапан 26 установлен на плунжере, а всасывающий 27 - в нижней части цилиндра.

Ниже насоса при необходимости устанавливается газовый IV или песочный якорь. В них газ и песок отделяются от пластовой жидкости. Газ направляется в затрубное пространство между насосно-компрессорной 17 и обсадной 16 колоннами, а песок осаждается в корпусе якоря.

При работе ШСНУ энергия от электродвигателя передается через редуктор к кривошипно-шатунному механизму, преобразующему вращательное движение выходного вала редуктора через балансир в возвратно-поступательное движение колонны штанг. Связанный с колонной плунжер также совершает возвратно-поступательное движение. При ходе плунжера вверх нагнетательный клапан закрыт давлением жидкости, находящейся над плунжером, и столб жидкости в колонне насосно-компрессорных труб движется вверх — происходит откачивание жидкости. В это время впускной (всасывающий) клапан открывается, и жидкость заполняет объем цилиндра насоса под плунжером.

При ходе плунжера вниз всасывающий клапан под действием давления столба откачиваемой жидкости закрывается, нагнетательный клапан открывается и жидкость перетекает в надплунжерное пространство цилиндра.

Откачиваемая жидкость отводится из колонны через боковой отвод устьевого сальника и направляется в промысловую сеть.

БИЛЕТ 8

Насосы для поддержания пластового давления требуют высокой надежности, так как, в случае поломки или изменения параметров насоса, нарушается вся цепочка по добыче нефти. Насосы ППД должны быть просты в обслуживании. Для российских реалий, в условиях авральной обстановки, необходимы простые и надежные  насосы, обеспечивающие бесперебойную работу, даже в случае изменений химического  состава агентов, изменений давления на всасывании насоса, загрязнении перекачиваемого агента. Насос ППД должен продолжать работать и обеспечивать работоспособность всей системы и, как следствие, насос ППД просто обязан быть  ремонтопригодным в сложных условия севера или других удаленных районов РФ и СНГ. 

Наиболее востребованные параметры насосов ППД (но бывают особые варианты) Подача насосов: от 5 м3/ч до 2000 м3/ч. Создаваемый напор насосом ППД: до 2500 м. Создаваемое  давление насосом ППД: до 250 атмосфер. 

Оборудование для систем ППД предназначено для поддержания давления в продуктивных нефтяных пластах месторождений методом закачки жидкости в пласт. Оборудование может быть использовано для внутрипромысловой транспортировки жидкости. 

Насосы ПДД для пресной воды

Пресная вода обычно забирается насосами ППД из поверхностных источников (рек, озер и т.д.).

Схема насоса на понтоне, для забора пресной воды из поверхностных источников, для насосов ППД

Погружные насосы Flygt для забора воды

Пресная вода, закачиваемая насосами ППД, не агрессивна и поэтому не требует специальных сталей для изготовления корпусов насосов поддержания пластового давления, но проблемой может служить песок или другие частицы, влияющие на торцевые уплотнения насосов ППД. Для решения этой проблемы и защиты поддерживающих насосов, устанавливают различные фильтры.

Насосы ППД для сеноманской воды

Сеноманская вода - агрессивный агент, содержащий различные вещества, в том числе хлориды. Также, при перекачивании насосами сеноманской воды, выделяется газ. Сеноманская вода подается погружными, полупогружными или скважинными насосами с кустов водозаборных скважин или из шурфов.

Погружной насос для подачи сеноманской воды из скважин и шурфов Полупогружной насос для подачи сеноманской воды из шурфов и скважин

Насосы для перекачивания сеноманской воды должны изготавливаться из специальных сталей или сплавов, чтобы выдержать коррозийное воздействие. С другой стороны, сеноманская вода вытесняет нефть лучше, чем пресная или подтоварная, при закачивании ее насосами ППД в пласты.

Вертикальные погружные и полупогружные насосы ППД

Погружные насосы VOGEL для скважин

Насосы ППД для подтоварной воды

Подтоварная вода является смесью воды с нефтью и другими примесями. Подтоварная вода образуется при разделении нефтяной эмульсии. Подтоварную воду необходимо как-то утилизировать и поэтому ее используют как агент и закачивают насосами ППД в пласты. Подтоварная вода специально готовится, перед тем как насосы ППД будут закачивать ее в пласт. К тому же, подтоварная вода, при перекачивании ее насосами ППД, плохо влияет на корпуса насосов ППД, рабочие колеса насосов, запорную арматуру и трубопроводы, так как при перекачивании образуются отложения. Применение подтоварной воды связано с тем, что ее необходимо утилизировать.

Насос ППД поддержания пластового давления для закачки подтоварной воды и сеноманской воды из стали duplex

На основе насосов для ППД, собираются комплектные насосные станции ППД - они могут поставляться на единой раме, либо поставляться в контейнере, содержащем автоматику, отопление, вентиляцию и другие необходимые элементы.

БИЛЕТ 9

Для транспорта нефти и нефтепродуктов по магистральным нефтепроводам, а также для перекачек с промыслов на заводы (приводные насосы) вследствие высокого к. п. д. насосов и приспособленности их для перекачек жидкостей с различными вязкостями. [c.16]    К данной фуппе отнесены насосы, предназначенные для перекачивания нефти помагистральным нефтепроводам, для работы в системах нефтеперерабатывающих заводов и др. [c.19]    Обезвоженную и обессоленную на УПН нефть подают в герметизированные резервуары, а затем насосами 6 — на автоматизированную установку Рубин 23, предназначенную для оценки качества и количества нефти. С установки Рубин нефть подают в товарные резервуары 24, из которых насосами направляют в магистральный нефтепровод 16, транспортирующий нефть к нефтеперерабатывающим заводам. Если на установке Рубин устанавливают, что нефть не соответствует кондициям, то ее возвращают на УПН. [c.20]    Применение на магистральных нефтепроводах схемы перекачки с подключенными резервуарами (или из насоса в насос ), что обеспечивает минимальный контакт нефти с атмосферой. [c.18]    Эти насосы применяют преимущественно в нефтяной промышленности (на нефтепроводах для перекачивания и повышения давления жидкости). Стабильнаянапорная характеристика обусловливает изменение насосов для индивидуальной работы, последовательного соединения и параллельного включения, Гюг-следовательно соединенные два насоса типа QG используют на магистральных нефтепроводах. Передача мощности между насосом [c.238]    Насосы для трубопроводного транспорта нефтепродуктов на дальние расстояниянормально работают при давлениях 60 ати, причем производительность насосов в зависимости от диаметра трубопровода лежит в пределах 100—500 м час. Отдельные установки имеются для производительности Q = 2000 M 4a . Для межпромысловых трубопроводов, предназначенных для перекачки сырых нефтей, применяются насосынебольшой производительности. Наиболее часто применяемой установкой длямагистральных нефтепроводов является агрегат, состоящий из двух насосов, работающих последовательно, и дополнительного третьего насоса, служащего резервным к первым двум основным. [c.105]    Последовательное соединение насосов экономически оправдывается при крутыххарактеристиках системы с малым значением (магистральные нефтепроводы). К- н. д. системы при последовательном включении н асосов можно оценить выражением, приняв Qi [c.156]

БИЛЕТ 10

При общности принципа действия и основных свойств возвратно-поступательные насосы весьма разнообразны по устройству.

Рис. 6.3. Схемы гидравлической части возвратно-поступательных насосов

По расположению в пространстве они, как и другие насосы, делятся на горизонтальные и вертикальные.

По выполнению рабочего органа насосы бывают:

поршневые; уплотнение связано с поршнем и плотно прилегает к обработанной поверхности цилиндра (рис. 6.3, а);

плунжерные; плунжер полированный, уплотнительный узел связан с гидравлической коробкой (рис. 6.3, б, в)или имеется щелевое уплотнение Щ большой протяженности (рис. 6.3, г);

диафрагменные; упругая диафрагма Д приводится в движение механически (рис. 6.3, д)или гидравлически (рис. 6.3, е)В последнем случае она служит перегородкой, разделяющей перекачиваемую жидкость, содержащую абразивные частицы, от чистой, омывающей трущиеся детали в насосной камере.

При бурении скважин и на нефтегазопромыслах применяют главным образом поршневые и плунжерные насосы. Существует предел уменьшения диаметра поршня для штока данного диаметра из-за невозможности разместить узел уплотнения в узком кольцевом пространстве между стенкой цилиндра и штоком. В плунжерном насосе эта задача решается проще, так как в неподвижное плунжерное уплотнение легко подавать смазку и его можно периодически подтягивать, компенсируя изнашивание.

По числу поршней или плунжеров различают насосы: одно-, двух-, трех- и многопоршневой (плунжерный), а по числу плоскостей, в которых расположены оси рабочих органов - одно-, двух- и многорядный. 1

Чем меньше поршней (плунжеров), тем проще схема насоса и тем меньше сменных деталей, что очень важно в условиях интенсивного их износа. С другой стороны, увеличением рядов, в которых использованы стандартные детали, достигается повышение подачи и равномерности движения жидкости в трубопроводах (см. § ).

Существенный признак устройства насоса - число тактов нагнетания и всасывания за двойной ход рабочего органа (род действия):

- в насосе одностороннего действия (см. рис. 6.3, а, б) рабочий орган выполняет одно всасывание и одно выталкивание, изменение объема насосной камеры Vs - FS, где и S - соответственно площадь и длина хода поршня (плунжера);

- в насосе двухстороннего действия (рис. 6.3, ж, и) жидкость всасывается и нагнетается два раза, так что в двух насосных камерах

VS = FS +(F-f)S = (2F - /) S,

В терминах, начинающихся со слова «много», допускается замена слова на цифровую приставку (например, «шестиплунжерный»).

 

где f - площадь поперечного сечения штока;

- в дифференциальном насосе (рис. 6.3, з, г) жидкость всасывается один раз (Vs FS), a нагнетается - двумя порциями:

Vs = (F-f)S + fS.

При равных S и значение Vs в насосе двухстороннего действия больше, чем в других насосах, что является причиной наибольшего распространения этого вида насоса при невысоких давлениях. С увеличением давления возрастают усилие в штоке и его диаметр, а площадь F - f существенно уменьшается. В результате не получают указанного преимущества насосы двухстороннего действия, а имеют преимущества насосы одностороннего действия: сниженное число клапанов (два в ряду вместо четырех) и отсутствие сальников. Как уже сказано, это имеет решающее значение в условиях быстрого износа клапанов и сальников.

В дифференциальном насосе (см. рис. 6.3,з) объем Vs такой же, как в насосе одностороннего действия, но движение жидкости в отводящей трубе более равномерное. Кроме того, в той же степени снижено усилие по штоку. Если f = F/2, то нагрузка на шток одинаковая независимо от направления движения поршня. В этом достоинство дифференциального насоса. Вследствие недостатков - наличия сальника и непроточной «штоковой» камеры, являющейся местом накапливания осадков (песка, утяжелителя и т. п.) и усложнения конструкции дифференциальный насос (см. рис. 6.3, з) распространения не получил. Однако в скважинном исполнении плунжерный вариант дифференциального насоса (см. рис. 6.3, г) оказался наиболее экономичным.

По характеру движения ведущего звена возвратно-поступательные насосы делятся на прямодействующие, вальные и поступательно-поворотные.

В прямодействующем насосе ведущим звеном служит поршень в силовом цилиндре, совершающий возвратно-поступательное движение. Силовой цилиндр может быть паровым, пневматическим или гидравлическим.

В паровом или пневматическом насосе (рис. 6.4, а) впуск пара или сжатого воздуха то в одну, то в другую часть силового цилиндра 2 и выпуск его в атмосферу обеспечивается золотником 1. При подходе к крайнему положению поршень 3перекрывает выпускной канал и останавливается. Для обратного хода золотник должен изменить положение.

 

 

 

 

Рис. 6.4. Схемы прямодействующих насосов

Управление золотниками выполняется по-разному. У двухрядных насосов оно перекрёстное: золотник в одном ряду движется при помощи рычажной передачи поршневым штоком другого ряда и наоборот. Золотник соединяется со своим штоком не наглухо, а с продольным зазором. Благодаря зазору при перемене направления движения в движении поршней возникает пауза, что благоприятствует работе клапанов. Однорядный насос обычно имеет вспомогательный золотник, управляющий главным. …..Вскважинном гидроприводном насосе (рис. 6.4, б) вспомогательным золотником служит поршневой шток, на котором в верхней и нижней частях делаются продольные канавки для прохода рабочей жидкости. В данный момент поршневая группа движется вниз. Когда канавка сообщит полость 3 с областью высокого давления D, золотник переместится в верхнее положение, остановит поршни, а затем откроет выход жидкости из камеры В. При последующем подъеме поршней канавка соединит полость 3 с областью низкого давления H, и золотник сместится в нижнее положение. В этом агрегате насос 5 - дифференциальный.

Существуют однорядные гидроприводные насосы, предназначенные для цементирования скважин, работающие на чистом масле от регулируемого силового насоса. Не исключена возможность применения таких насосов при бурении скважин. …….Вальные насосы, признаком которых является вращательное движение ведущего звена (вала), различаются механизмом передачи движения к рабочим органам: кривошипный - с кривошипно-шатунным механизмом и кулачковый - с кулачковым механизмом.

В отличие от прямодействующего насоса, имеющего постоянную скорость движения поршня на большей части хода, движение поршня вального насоса неравномерное. В зависимости от положения кривошипа или кулачка скорость поршня изменяется от нуля в мертвых точках до максимума (у середины хода). Соответственно изменяется расход жидкости в трубопроводах, примыкающих к рабочей камере. Для выравнивания подачи жидкости кривошипы (или кулачки) в многорядных насосах смещены относительно друг друга на некоторый угол. В двухрядных насосах этот угол равен 90°, в трехрядных - 120°, в – рядных -  .

В зависимости от расположения рабочих органов п о отношению к ведущему звену различают возвратно-поступательные насосы: односторонний (оси рабочих органов параллельны и расположены на одной стороне привода); оппозитный (на одной оси по обе стороны привода); V-образный (на двух пересекающихся осях на одной стороне привода); звездообразный (на нескольких пересекающихся осях).

Наиболее распространены односторонние кривошипные (рис. 6.5, а) насосы, приводной механизм которых состоит из трансмиссионного вала, получающего вращающий момент через трансмиссию от двигателя, зубчатого редуктора и коренного вала, связанного с шатунами посредством собственно кривошипов, эксцентриков, пальцев или колен. Реже используется схема с червячной передачей (рис. 6.5, в). Этот вид передачи удобен для привода насоса от вала, расположенного вдоль оси насоса, например, на автомобиле.

В оппозитном насосе (рис. 6.5, г)нагрузка на коренной вал и коренные подшипники меньше, чем в одностороннем насосе, так как усилия, действующие по двум противолежащим штокам, взаимно уравновешиваются. При вращении коренного вала с эксцентриками крейцкопфная рама скользит по трубчатым направляющим 1, связывающим гидравлические части насоса. Оппозитная схема применяется в современных поршневых компрессорах, обеспечивая существенное увеличение частоты ходов. В тихоходных насосах преимущество схемы выявлено недостаточно.

Для бесступенчатого регулирования длины хода плунжера в дозировочных насосах небольшой мощности служат различные механизмы, встроенные в приводную часть насоса. На рис. 6.5, б длина хода крейцкопфа 1 зависит от положения шарнира 2, который можно перемещать по дуге окружности 3.

 а

 

Рис. 6.5. Схемы вальных насосов

 

В других насосах регулируется эксцентриситет головки шатуна относительно оси коренного вала или длина одного из рычагов рычажного механизма, связывающего коренной вал с хвостовиком плунжера.

 

БИЛЕТ 11

Поршневой насос (плунжерный насос) — один из видов объёмных гидромашин, в котором вытеснителями являются один или несколько поршней (плунжеров), совершающих возвратно-поступательное движение.

Рис. 1. Конструктивная схема простейшего поршневого насоса одностороннего действия

Рис. 2. Дифференциальная схема включения поршневого насоса. Во время движения поршня влево часть жидкости отводится в штоковую полость, объём которой меньше объёма вытесняемой жидкости за счёт того, что часть объёма штоковой полости занимает шток

В отличие от многих других объёмных насосов, поршневые насосы не являются обратимыми, то есть, они не могут работать в качестве  HYPERLINK "https://ru.wikipedia.org/wiki/%D0%93%D0%B8%D0%B4%D1%80%D0%BE%D0%B4%D0%B2%D0%B8%D0%B3%D0%B0%D1%82%D0%B5%D0%BB%D1%8C" \o "Гидродвигатель" гидродвигателей из-за наличия клапанной системы распределения.

Поршневые насосы не следует путать с роторно-поршневыми, к которым относятся, например, аксиально-поршневые и радиально-поршневые насосы.

Принцип работы таков: за счет поступательного движения поршня создаётся разряжение в полости под ним, и туда засасывается жидкость из подводящего (всасывающего) трубопровода. При обратном движении поршня на всасывающем трубопроводе закрывается клапан, предотвращающий протечку жидкости обратно, и открывается клапан на нагнетательном трубопроводе, который был закрыт при всасывании. Туда вытесняется жидкость, которая находилась под поршнем, и процесс повторяется. Недостаток такого насоса в том, что жидкость движется по трубопроводу с различной скоростью (скачками). Этот момент обычно обходят созданием насосов, в которых несколько поршней. Основное преимущество в том, что он способен закачивать жидкость, будучи в момент пуска незаполненным ею (сухое всасывание), и поэтому применяется обычно там, где этим преимуществом необходимо воспользоваться.

Рис. 3.Принцип работы поршня

Одной из разновидностей поршневого насоса является диафрагменный насос.

Поршневые насосы используются с глубокой древности. Известно их применение для целей водоснабжения со II века до нашей эры. В настоящее время поршневые насосы используются в системах водоснабжения, в пищевой и химической промышленности, в быту. Диафрагменные насосы используются, например, в системах подачи топлива в двигателях внутреннего сгорания.

БИЛЕТ 12

Гидравлическая часть служит для преобразования механической энергии поршней в гидравлическую энергию перекачиваемой жидкости и для придания жидкости необходимого направления.

Гидравлическая часть насоса состоит из приемного коллектора 5, клапанно-распределительного механизма, включающего всасывающие 6 и нагнетательные 7 клапаны, цилиндропоршневой группы 8, включающей цилиндровую втулку, поршень, его шток 9 с уплотнением, нагнетательный коллектор 10.

Гидравлическая часть поршневого бурового насоса состоит из корпусных деталей постоянного применения, ресурс которых равен ресурсу всего насоса в целом, и сменных деталей с ресурсом около 100 ч, в зависимости от условий работы. К числу быстроизнашивающихся сменных деталей поршневого насоса относятся цилиндры, поршни (плунжеры), клапаны и сальниковые уплотнения

Билет 13

Клапаныпредназначены для периодического разобщения рабочей камеры насоса от пространства всасывания и нагнетания,

 при этом обеспечивается движение жидкости в одном определенном направлении.

Клапан - один из важнейших узлов, дефекты в работе которого сильно отражаются на подаче и надежности работы насоса.

Клапаны, устанавливаемые на всасывающей и на нагнетательной частях насоса, обычно выполняются одинаковыми. По принципу действия они подразделяются на самодействующие (автоматические) и принудительные действия. Самодействующие клапаны открываются давлением жидкости на их нижнюю поверхность, а закрываются под действием собственного веса или совместного действия веса и давления пружины. Клапаны принудительного действия приводятся в движение от вала насоса через передаточный механизм. Самодействующие клапаны в зависимости от рода движения подразделяются на подъемные и откидные или шарнирные. Подъемные клапаны в свою очередь выполняются тарельчатыми, кольцевыми и шаровыми.

Применение клапанов того или иного типа зависит главным образом от рода перекачиваемой жидкости и числа ходов поршня.

Наибольшее распространение в нефтяной промышленности получили насосы, снабженные тарельчатыми (рис. 1.13) и шаровыми клапанами, причем последние применяют преимущественно в скважинных насосах.

БИЛЕТ 14

Коэффициент подачи поршневых насосов, факторы на него влияющие

Действительная подача насоса Qд всегда меньше теоретической  . Это обусловлено несколькими факторами.

а) утечками жидкости через уплотнения штока или поршня в атмосферу;б) перетоком жидкости через уплотнения поршня внутри цилиндра;в) утечками жидкости в клапанах вследствие их негерметичности и запаздывания закрывания;г) подсосом воздуха через уплотнения сальника;д) дегазацией жидкости в цилиндре насоса вследствие снижения давления в рабочей камере; е) отставанием жидкости от движущегося поршня.

Утечки, перечисленные в пп. а), б) и в) учитываются коэффициентом утечек ηу, явления, перечисленные в пп. г), д) и е) - коэффициентом наполнения ηн.

Произведение коэффициентов утечек и наполнения называется коэффициентом подачи η, который характеризует отношение действительной подачи насоса к теоретической:

                (1.7)

Коэффициент подачи зависит от качества уплотнений, степени их изношенности, свойств перекачиваемой жидкости и режима работы насоса. В реальных условиях коэффициент подачи колеблется от 0,85 до 0,98.

Подачей насоса называется количество жидкости, нагнетаемое насосом за единицу времени.

Средняя теоретическая подача поршневого насоса определяется суммой объемов описываемых поршнями в единицу времени.

Примем следующие обозначения:

F - площадь сечения поршня или плунжера в м2;- длина хода поршня в м;- число двойных ходов поршня в минуту;V - объем, описанный поршнем за один ход в м3;.Q -  теоретическая подача насоса в м3/с.

Подача насоса простого действия

При ходе всасывания в цилиндре освобождается объем:

V = F · S м3>.

Этот объем заполняется всасываемой жидкостью. При ходе нагнетания этот же объем жидкости нагнетается в напорный трубопровод, следовательно V - теоретическая подача насоса за один двойной ход поршня.

Теоретическая подача насоса в 1 секунду:

              (1.4)

Подача насоса двойного действия

При ходе поршня вправо (см. рис. 1.1, в) в левую камеру поступает объем жидкости, равный F · S, а при обратном в правую камеру поступает объем (F — f) · S, где f -  площадь сечения штока, уменьшающая полезный объем цилиндра.

Тогда при одном двойном ходе теоретический объем жидкости, поступающей в насос и нагнетаемый им, составит:

F · S + (F - f) · S = F · S + F · S - f · S = (2 · F - f) · S.

При этом теоретическая подача насоса двойного действия:

            (1.5)

Подача трехпоршневого насоса простого действия

Подача такого насоса, состоящего из трех насосов простого действия, равна:

              (1.6)

БИЛЕТ 15

По условию неразрывности потока несжимаемой жидкости можно записать, что мгновенная подача насоса равна

 ,

где F и V - площадь и скорость поршня, а индексами «в» и «н» обозначены соответствующие величины в подводящем и напорном трубопроводах.

Из уравнения неразрывности и рисунка 6.13 следует, что мгновенная подача насоса представляет собой синусоиду.

На рисунке 6.14 представлены схема и график подачи однопоршневого насоса одностороннего действия, из которого видно, что за ход нагнетания мгновенная подача изменяется от нуля (при  ) до  (при  ) и снова падает до нуля (при  )

Рисунок 6.14

 

Неравномерность подачи насоса можно оценить сравнением максимальной подачи со средней - это отношение называется коэффициентом неравномерности подачи:

 ,

где средняя подача - это высота прямоугольника, равновеликого площади синусоиды мгновенной подачи за один оборот кривошипа

 .

Площадь синусоиды соответствует объему, описываемому поршнем за один ход:

 .

Так как   а  , то

 .

Следовательно:

 ,

т.е. QCP соответствует идеальной подаче со средней скоростью движения поршня. Коэффициент неравномерности подачи однопоршневого насоса одностороннего действия равен

 ,

т.е. максимальная мгновенная подача в 3,14 раза больше средней подачи.

Рассмотрим график подачи двухпоршневого насоса одностороннего действия (рисунок 6.15 а). В таком насосе для обеспечения более равномерной подачи необходимо сдвинуть поршни на ход, т.е. кривошипы должны иметь сдвиг на 180.

Тогда степень неравномерности подачи составит

 .

Для однопоршневого насоса двухстороннего действия (рисунок 6.15б) степень неравномерности подачи  , так как средняя подача составляет  меньше, чем предыдущего.

Рисунок 6.15 a

График подачи трехпоршневого насоса изображается в виде трех синусоид, сдвинутых относительно друг друга на 120 (рисунок 6.16).

 

Рисунок 6.15 б

 

Для получения суммарной мгновенной подачи необходимо сложить ординаты синусоид на участках, где они накладываются друг на друга.

Степень неравномерности подачи равна (при  или при  )

 .

График подачи насоса, имеющего четыре рабочих камеры строится из условия, что кривошипы двух цилиндров расположены под  (рисунок 6.17).

После получения суммарной мгновенной подачи (верхняя линия на графике рисунка 6.17) определяем степень неравномерности подачи (максимум мгновенной подачи при  ).

 .

 

Рисунок 6.16

 

Рисунок 6.17

 

Сравнение степени неравномерности подачи поршневых насосов с тремя и четырьмя камерами показывает преимущества нечетного числа камер. Так повторяется и при дальнейшем увеличении числа камер. Дальнейшее увеличение числа рабочих камер усложняет конструкцию и мало влияет на уменьшение степени неравномерности подачи. Поэтому больше пяти камер в стационарных насосах не делают.

БИЛЕТ 16

Компенсатор — устройство, позволяющее воспринимать и компенсировать перемещения, температурные деформации, вибрации, смещения.

Применение компенсаторов на различных типах устройств обусловлено необходимостью избежать, стабилизировать, либо свести к минимуму возникновение нежелательных факторов, возникающих в результате воздействия окружающей или проводимой среды, а также в результате работы самого устройства. Такими факторами могут быть напряжения в металле, опорах трубопровода и пр.

Виды компенсаторов[ HYPERLINK "https://ru.wikipedia.org/w/index.php?title=%D0%9A%D0%BE%D0%BC%D0%BF%D0%B5%D0%BD%D1%81%D0%B0%D1%82%D0%BE%D1%80&veaction=edit&vesection=1" \o "Редактировать раздел \«Виды компенсаторов\»" править | править вики-текст]

В зависимости от рабочих параметров эксплуатации и среды применяют следующие виды компенсаторов: компенсатор сильфонный, компенсатор резиновый, компенсатор тканевый, компенсатор фторопластовый, компенсатор линзовый, компенсатор сальниковый.

Основными параметрами для выбора компенсатора являются: температура среды, давление, агрегатное состояние перемещаемой среды

Тканевые компенсаторы[ HYPERLINK "https://ru.wikipedia.org/w/index.php?title=%D0%9A%D0%BE%D0%BC%D0%BF%D0%B5%D0%BD%D1%81%D0%B0%D1%82%D0%BE%D1%80&veaction=edit&vesection=2" \o "Редактировать раздел \«Тканевые компенсаторы\»" править | править вики-текст]

Тканевый компенсатор

Основным местом применения тканевых компенсаторов являются системы с газообразными средами. Температура газов может достигать 1200°С.

Компенсаторы изготавливаются из одного или нескольких слоев изоляционных и газоплотных материалов. Материалы собираются вместе в так называемый "сэндвич". Газоплотные материалы изготавливаются из различных покрытий и имеют высокую химическую стойкость, порой превосходящую нержавеющую сталь. Существуют различные типы креплений компенсатора, например крепление под хомут или прижимной типа 000, фланцевое крепление тип 101 Для температур свыше 500 °С применяются конструкции с внутренней изоляцией.

Резиновые компенсаторы[ HYPERLINK "https://ru.wikipedia.org/w/index.php?title=%D0%9A%D0%BE%D0%BC%D0%BF%D0%B5%D0%BD%D1%81%D0%B0%D1%82%D0%BE%D1%80&veaction=edit&vesection=3" \o "Редактировать раздел \«Резиновые компенсаторы\»" править | править вики-текст]

Резиновый компенсатор трубопровода

Основным местом применения резиновых компенсаторов являются трубопроводные системы с жидкими средами. Температура жидкости может достигать 200 С. Стандартные исполнения имеют стойкость до 100 -110 С. Основным способом подсоединения к трубопроводу является фланцевое соединение. Для повышения устойчивости к внешнему воздействию резиновый компенсатор может быть упакован в специальный огнестойкий чехол.

Компенсаторы изготавливаются из различных эластомеров (резин) и имеют кордовое усиление. В зависимости от проходящей жидкости подбирается подходящий эластомер. Наиболее распространенным материалами являются EPDM (этилен-пропиленовый каучук) и NBR (бутадиен-нитрильный каучук). Резиновые компенсаторы EPDM используются для водной рабочей среды, NBR — для нефтепродуктов и их производных. Для химически агрессивных сред (кислоты, щелочи и пр.) используется специальный материал — гипалон (сульфохлорированный полиэтилен). Для повышения устойчивости к различным химически активным средам может быть использовано специальное тефлоновое напыление. Для повышения надежности гибкого соединения используются различные угловые ограничители и соединительные тяги.

Наиболее широкое распространение резиновые компенсаторы получили в водопроводах, канализационных трубопроводах, а также в нефтехимической промышленности. Большинство производителей насосного оборудования рекомендуют устанавливать резиновые компенсаторы между насосом и трубопроводом, что позволяет скомпенсировать вибрацию, исходящую от насоса, тем самым повысив надежность и срок службы всей системы, в том числе и другого оборудования, подключенного к трубопроводу. В последнее время у некоторых европейских производителей в линейке появились резиновые компенсаторы с особым составом резины, который позволяет применять их для водопроводов питьевой воды, а также в пищевой промышленности.

Резиновый компенсатор

Сильфонные компенсаторы[ HYPERLINK "https://ru.wikipedia.org/w/index.php?title=%D0%9A%D0%BE%D0%BC%D0%BF%D0%B5%D0%BD%D1%81%D0%B0%D1%82%D0%BE%D1%80&veaction=edit&vesection=4" \o "Редактировать раздел \«Сильфонные компенсаторы\»" править | править вики-текст]

Основным местом применения сильфонных компенсаторов являются системы с жидкими и парообразными средами, работающие при высоких давлениях и высоких температурах. Сильфонные компенсаторы предназначены для компенсации температурных расширений, несоосностей трубопроводов и вибрационных воздействий. Широко применяются в энергетике, химической, нефтехимической, нефтеперерабатывающей, газовой и других отраслях промышленности. Основной элемент сильфонного компенсатора - сильфон - упругая асимметричная гофрированная металлическая оболочка. Конструкция сильфона позволяет компенсатору под действием продольных (ход), поперечных (сдвиг) и угловых (поворот) моментов растягиваться, сжиматься, деформироваться в поперечном направлении и изгибаться со значительными перемещениями (до десятков сантиметров и градусов), сохраняя герметичность[1]. Вид деформации сильфона в процессе эксплуатации определяется конструктивным исполнением компенсатора.

Сальниковые компенсаторы[ HYPERLINK "https://ru.wikipedia.org/w/index.php?title=%D0%9A%D0%BE%D0%BC%D0%BF%D0%B5%D0%BD%D1%81%D0%B0%D1%82%D0%BE%D1%80&veaction=edit&vesection=5" \o "Редактировать раздел \«Сальниковые компенсаторы\»" править | править вики-текст]

Сальниковые компенсаторы предназначены для компенсации температурных деформаций трубопроводов водяных и паровых теплосетей, с параметрами воды и пара: рабочем давлении до 2,5 МПа (25 кгс/см2), температуре воды до 200˚С, температуре пара до 300˚С. Сальниковые компенсаторы односторонние изготавливаются для условных проходов Ду от 100 до 1400 мм, а сальниковые компенсаторы двухсторонние – для Ду от 100 до 800 мм. Сальниковые компенсаторы применяются при строительстве тепловых сетей в районах с расчетной температурой наружного воздуха не ниже минус 40˚С. Компенсирующая способность компенсаторов сальниковых варьируется в зависимости от условного прохода: от 200 до 450 мм – для односторонних компенсаторов и от 400 до 800 мм для двухсторонних компенсаторов.

Сальниковые компенсаторы изготавливаются по серии 4.903-10 выпуск 7 и по серии 5.903-13 выпуск 4

Линзовые компенсаторы[ HYPERLINK "https://ru.wikipedia.org/w/index.php?title=%D0%9A%D0%BE%D0%BC%D0%BF%D0%B5%D0%BD%D1%81%D0%B0%D1%82%D0%BE%D1%80&veaction=edit&vesection=6" \o "Редактировать раздел \«Линзовые компенсаторы\»" править | править вики-текст]

Компенсаторы линзовые ПГВУ круглые и прямоугольные предназначены для компенсации температурных удлинений круглых и прямоугольных газовоздуховодов (ПГВУ) котельных установок. Компенсаторы линзовые ПГВУ применяется в неагрессивных и малоагрессивных средах с избыточным давлением до 1500мм вод. ст. (0.015МПа) и температурой среды от -20 до 425°С. Компенсаторы круглые линзовые ПГВУ изготавливаются на Ду от 150 до 6000 мм, одно-, двух-, трех- и четырехлинзовыми, в соответствии с требуемой компенсирующей способностью: Компенсаторы прямоугольные линзовые ПГВУ изготавливаются размерами от 300х400 до 7850х8000 мм, одно-, двух-, трех- и четырехлинзовыми, в соответствии с требуемой компенсирующей способностью: Компенсаторы круглые осевые линзовые изготовленные по ОСТ 34-10-569-93 предназначены для компенсации температурных изменений длины трубопроводов на которые распространяются требования «Правил устройства и безопасной эксплуатации трубопроводов пара и горячей воды», работающих в условиях неагрессивных и малоагрессивных сред, с условным давлением до 1,6МПа (16кгс/см2) и температурой до 300˚С и для Ду ≤ 400мм температурой до 425˚С. Компенсаторы изготавливаются на Ду от 100 до 2200 мм, условные давления Ру 0,6МПа, 1,0МПа и 1,6МПа, одно-, двух-, трех- и четырехлинзовыми, в соответствии с компенсирующей способностью.

БИЛЕТ 17

Индикаторная диаграмма — для различных поршневых механизмов графическая зависимость давления в цилиндре от хода поршня (или в зависимости от объёма, занимаемого газом или жидкостью в цилиндре). Индикаторные диаграммы строятся при исследовании работы поршневых насосов, двигателей внутреннего сгорания, паровых машин и других механизмов.

Индикаторная диаграмма парового двигателя паровоза(показана замкнутой красной линией)

Индикаторная диаграмма представляет собой замкнутую линию. По оси абсцисс откладывают величину хода поршня (или объём рабочей среды), а по оси ординат — давление.

По форме индикаторных диаграмм можно судить об исправности механизма, и при отклонении от нормальной формы диаграммы можно определять - в чём именно заключается неисправность. Иными словами, индикаторные диаграммы используют в технической диагностике поршневых механизмов.

Кроме того, с помощью индикаторных диаграмм можно определять индикаторную мощность и определять КПД механизма.

Термин "индикаторная диаграмма" применяется также в нефтегазовой промышленности по отношению к нефтяным и газовым скважинам, где он носит иной смысл.

Билет 18

Диагностика поршневого насоса по индикаторной диаграмме

 

— вместе с жидкостью по линии асжимается воздух

2 — в рабочей камере вследствие неправильной конструкции образуется газовый мешок

— запаздывание с посадкой всасывающего клапана

— запаздывание с закрытием нагнетательного клапана

56— неплотность клапанов.

7 — насос работает без пневмокомпенсаторов или при их неэффективном действии

— жидкость неравномерно подходит к насосу при давлении выше атмосферного

Билет 19

Компрессор (от лат. compressio — сжатие) — энергетическая машина или устройство для повышения давления (сжатия) и перемещения воздуха.

Общепринятая классификация механических компрессоров по принципу действия, под принципом действия понимают основную особенность процесса повышения давления, зависящую от конструкции компрессора. По принципу действия все компрессоры можно разделить на две большие группы: динамические и объёмные.

Объёмные компрессоры[ HYPERLINK "https://ru.wikipedia.org/w/index.php?title=%D0%9A%D0%BE%D0%BC%D0%BF%D1%80%D0%B5%D1%81%D1%81%D0%BE%D1%80&veaction=edit&vesection=2" \o "Редактировать раздел \«Объёмные компрессоры\»" править | править вики-текст]

В машинах объёмного принципа действия рабочий процесс осуществляется в результате изменения объёма рабочей камеры. Номенклатура машин данного типа разнообразна, и насчитывает более десятка, основные из них: поршневые, винтовые, роторно-шестерёнчатые, мембранные, жидкостно-кольцевые, воздуходувки Рутса, спиральные, компрессор с катящимся ротором.

Поршневые компрессоры могут быть одностороннего или двухстороннего действия, крейцкопфные и бескрейцкопфные, смазываемые и без применения смазки (сухого трения или сухого сжатия), при высоких давлениях сжатия применяются также плунжерные.

Роторные компрессоры — машины с вращающим сжимающим элементом, конструктивно подразделяются на винтовые, ротационно-пластинчатые, жидкостно-кольцевые, встречаются и другие конструкции.

Винтовые компрессоры

Конструкция винтового блока состоит из двух массивных винтов и корпуса. При этом винты во время работы находятся на некотором расстоянии друг от друга, и этот зазор уплотняется масляной пленкой. Трущихся элементов нет.

Таким образом, ресурс винтового блока практически неограничен и достигает более чем 200—300 тыс. часов. Регламентной замене подлежат лишь подшипники винтового блока.

Пластинчато-роторные компрессоры

Конструкция пластинчато-роторного блока состоит из одного ротора, статора и минимум восьми пластин, масса которых, а соответственно и толщина ограничены. На пластину в процессе работы действуют силы: центробежная и трения/упругости масляной пленки.

Так как масляная пленка нормализуется и становится равномерной и достаточной лишь после нескольких минут работы компрессора, то во время стартов и остановов идет трение пластин о статор и соответственно повышенный их износ и выработка.

Чем большее давление должен нагнетать такой блок, тем большая разницы давлений в соседних камерах сжатия, и тем большая должна быть центробежная сила для недопускания перетоков сжимаемого воздуха из камеры с большим давлением в камеру с меньшим. В свою очередь, чем больше центробежная сила, тем больше и сила трения в момент пуска/останова и тем тоньше масляная пленка во время работы — это является основной причиной почему данная технология получила широкое распространение в области вакуума (тоесть давление до 1 бара) и в области нагнетания давления до 3-4 бар.

Так как масляная пленка между пластинами и статором всего несколько микрон, то любая пыль, тем более твердые частички крупнее размеров, выступают как абразив, который царапает статор и делает выработку по пластинам. Это приводит к тому, что возникают перепуски сжимаемого воздуха из одной камеры сжатия в другую и производительность заметно падает.

В отличие от небольших вакуумных насосов, где широко применяется пластинчато-роторная технология, в компрессорах большой производительности и давлением выше 5 бар со временем необходимо будет менять весь блок в сборе, так как замена отдельно пластин эффективна лишь в случае восстановления геометрии статора, а такие большие статоры восстановлению (шлифовке) не подлежат.

Производители обычно не дают никаких данных по ресурсу пластинчато-роторного блока, так как он очень сильно зависит от качества воздуха и режима работы компрессора. В случае газовых компрессоров, где он качает газ практически не останавливаясь круглый год, ресурс может действительно достигать и более 100 тыс. часов потому что масляная пленка равномерная и достаточная все время работы без остановок.

В случае же промышленного использования, где разбор воздуха крайне неравномерен и компрессор запускается и останавливается несколько десятков раз в день, большую часть времени нормальной для работы масляной пленки внутри блока нет, что является причиной агрессивного износа пластин. В таком случае ресурс блока не более 25 тыс. часов.

Динамические компрессоры[ HYPERLINK "https://ru.wikipedia.org/w/index.php?title=%D0%9A%D0%BE%D0%BC%D0%BF%D1%80%D0%B5%D1%81%D1%81%D0%BE%D1%80&veaction=edit&vesection=3" \o "Редактировать раздел \«Динамические компрессоры\»" править | править вики-текст]

В компрессорах динамического принципа действия газ сжимается в результате подвода механической энергии от вала, и дальнейшего взаимодействия рабочего вещества с лопатками ротора. В зависимости от направления движения потока и типа рабочего колеса такие машины подразделяют на центробежные и осевые.

Турбокомпрессоры — динамические машины, в которых сжатие газа происходит в результате взаимодействия потока с вращающейся и неподвижной решётками лопастей.

Прочие классификации[ HYPERLINK "https://ru.wikipedia.org/w/index.php?title=%D0%9A%D0%BE%D0%BC%D0%BF%D1%80%D0%B5%D1%81%D1%81%D0%BE%D1%80&veaction=edit&vesection=4" \o "Редактировать раздел \«Прочие классификации\»" править | править вики-текст]

По назначению компрессоры классифицируются по отрасли производства, для которых они предназначены (химические, холодильные, энергетические, общего назначения и т. д.). По роду сжимаемого газа (воздушный, кислородный, хлорный, азотный, гелиевый, фреоновый, углекислотный и т. д.). По способу отвода теплоты — с жидкостным или воздушным охлаждением.

По типу приводного двигателя — с приводом от электродвигателя, двигателя внутреннего сгорания, паровой или газовой турбины. Дизельные газовые компрессоры широко используются в отдаленных районах с проблемами подачи электроэнергии. Они шумные и требуют вентиляции для выхлопных газов. С электрическим приводом компрессоры широко используются в производстве, мастерских и гаражах с постоянным доступом к электричеству. Такие изделия требуют наличия электрического тока, напряжением 110-120 Вольт (или 230-240 Вольт). В зависимости от размера и назначения, компрессоры могут быть стационарными или портативными. По устройству компрессоры могут быть одноступенчатыми и многоступенчатыми.

По конечному давлению различают:

вакуум-компрессоры, газодувки — машины, которые отсасывают газ из пространства с давлением ниже атмосферного или выше. Воздуходувки и газодувки подобно вентиляторам создают поток газа, однако, обеспечивая возможность достижения избыточного давления от 10 до 100 кПа (0,1…1 атм), в некоторых специальных исполнениях — до 200 кПа (2 атм). В режиме всасывания воздуходувки могут создавать разрежение как правило 10..50 кПа, в отдельных случаях до 90 кПа и работать как вакуумный насос низкого вакуума[1];

компрессоры низкого давления, предназначенные для нагнетания газа при давлении от 0,15 до 1,2 МПа;

компрессоры среднего давления — от 1,2 до 10 МПа;

компрессоры высокого давления — от 10 до 100 МПа.

компрессоры сверхвысокого давления, предназначенные для сжатия газа выше 100 МПа.

Производительность[ HYPERLINK "https://ru.wikipedia.org/w/index.php?title=%D0%9A%D0%BE%D0%BC%D0%BF%D1%80%D0%B5%D1%81%D1%81%D0%BE%D1%80&veaction=edit&vesection=5" \o "Редактировать раздел \«Производительность\»" править | править вики-текст]

Производительность компрессоров обычно выражают в единицах объёма газа сжатого в единицу времени (м³/мин, м³/час). Производительность обычно считают по показателям приведённым к нормальным условиям. При этом различают производительность по входу и по выходу, эти величины практически равны при маленькой разнице давлений между входом и выходом, но при большой разнице, например, у поршневых компрессоров, выходная производительность может при тех же оборотах падать более чем в два раза по сравнению с входной производительностью, измеренной при нулевом перепаде давления между входом и выходом. Компрессоры называются дожимающими, если давление всасываемого газа существенно превышает атмосферное.

Билет 20

Термодинамические основы сжатия газов

Изотермический процесс изменения состояния газа протекает при одной постоянной температуре.

Адиабатический процесс - вся теплота полностью остается внутри газа, повышая его температуру.

p/r=RT β

Изотермический процесс

pV=const=C1 или p1V1=p2V2 =C1

Удельная работа

 

 

Адиабатический процесс

pVk=const=C2 или p1V1k=p2V2k=C2

где к=ср/сV – показатель адиабаты;

ср и сV – удельная теплоемкость газа соответственно при р=const и V=const

 

Удельная работа

Полная удельная работа компрессора

А=Авс+Асж+Авыт

Авс=-p1V1

Авыт= p2V2

изотермический процесс

Аиз=Асж.из=p1V1ln(p2/p1)

адиабатический процесс

 

 

Конечная температура при адиабатическом процессе сжатия

 

 

Количество теплоты, которая выделится при изотермном сжатии

qиз=(ср-cV)Tln(p2/p1)

Политропный процесс

 

 

 

 

 

 

 

 

степень сжатия одной ступени

 

 

Билет 21

Поршнево́й компре́ссор — тип компрессора, энергетическая машина для сжатия и подачи воздуха или жидкостей (масла, хладагента и др.) под давлением. Компрессоры данного типа широко применяются в машиностроении, текстильном производстве, в химической, холодильной промышленности и криогенной технике. Многообразны по конструктивному выполнению, схемам и компоновкам.

Поршневые компрессоры различают по устройству кривошипно-шатунного механизма, устройству и расположению цилиндров, числу ступеней сжатия.

Поршневые компрессоры могут быть: крейцкопфные — с двухсторонним всасыванием и бескрейцкопфные — одностороннего всасывания (мощностью до 100 кВт).

По расположению цилиндров компрессоры подразделяются на вертикальные, горизонтальные и угловые.

К вертикальным относятся машины с цилиндрами, расположенными вертикально. При горизонтальном расположении цилиндры могут быть размещены по одну сторону коленчатого вала, такие компрессоры называются горизонтальными с односторонним расположением цилиндров; либо по обе стороны вала — с горизонтальными или двухсторонним расположением цилиндров.

К угловым компрессорам относятся машины с цилиндрами, расположенными в одних рядах вертикально, в других — горизонтально. Такие компрессоры называются прямоугольными. К угловым компрессорам относятся машины с наклонными цилиндрами, установленными V-образно и W-образно (компрессоры называются соответственно V- и W-образными).

Прогрессивным в развитии поршневых компрессоров явился переход на оппозитное исполнение компрессоров крупной и средней производительности. Оппозитные компрессоры, представляющие собой горизонтальные машины с встречным движением поршней и расположением цилиндров по обе стороны вала, отличаются высокой динамической уравновешенностью, меньшим габаритами и массой. Благодаря своим преимуществам оппозитные компрессоры практически полностью вытеснили традиционный тип крупного горизонтального компрессора.

Для машин малой и средней производительности основным является прямоугольный тип компрессора и компрессора с У-образным расположением цилиндров.

По числу ступеней сжатия[1] компрессоры различаются одно-, двух- и многоступенчатые. Многоступенчатое сжатие вызывается необходимостью ограничить температуру сжимаемого газа. В воздушных компрессорах возникает опасность воспламенения и взрыва масляного нагара, накапливающегося в трубопроводах, на крышках компрессоров и поверхностях клапанов, поэтому температура нагнетаемого воздуха не должна превышать 453К[источник не указан 2047 дней].

Компрессор без смазки цилиндров[править | править вики-текст]

Первоначально компрессор без смазки цилиндров выполнялся с лабиринтным уплотнением, в которых уплотнение поршня достигается с помощью канавок, нарезанных на поршне, но такая конструкция не получила практического применения. В дальнейшем развитие компрессоров без смазки цилиндров пошло по пути создания и внедрения компрессоров, в которых уплотнение поршней осуществляется поршневыми кольцами, выполненными из композиционных материалов. Компрессоры без смазки цилиндров необходимы для технологических процессов, в которых попадание примесей смазочного масла в сжимаемый газ весьма нежелательно. Такие современные компрессоры работают без ремонта более продолжительное время, чем компрессоры с обычной смазкой цилиндров. В настоящее время на ряде заводов изготовляются разнообразные типы компрессоров без смазки цилиндров.

Билет 22

Газомотокомпрессор — устройство, предназначенное для:

закачки газа в подземные хранилища газа;

сжатия и перекачивания природных газов на магистральных газопроводах;

интенсификации добычи нефти путем закачки попутного газа в нефтяные пласты;

использования в технологических процессах газо и нефтеперерабатывающих заводах;

добычи газового конденсата «сайклинг — процесс» (извлечение газового конденсата из пласта способом циркуляции газа осушенного от тяжелых углеводородов методом вымораживания в специальном оборудовании);

использования в технологических процессах по сжижению природных газов.

Газомотокомпрессор представляет собой агрегат, состоящий из компрессора и газового двигателя внутреннего сгорания. Двигатель и компрессор смонтированы на общей фундаментной раме.

Билет 23

Схема поршневого компрессора включает в себя поршень, цилиндр, всасывающий и нагнетательный клапаны, шток, кривошипно-шатунный механизм, в состав которого входят: крейцкопф, шатун и кривошип. Поршневые компрессоры в основе своей всегда одинаковы.

Действие схемы вертикального поршневого компрессора, состоящей из перечисленных элементов, можно разделить на два этапа:

При движении поршня от крышки цилиндра вдоль оси газ, заключенный в увеличивающемся пространстве, расширяется. Давление внутри цилиндра становится меньше внешнего давления, что приводит к всасыванию порции газа через клапан.

Нагнетание (сжатие) газа происходит при движении поршня в обратном направлении. Давление в цилиндре увеличивается пропорционально сжатию, что приводит к выпуску сжатого газа через нагнетательный клапан.

Особенности конструкции:

- подают чистый воздух без примеси масла;

- специальный шумопоглощающий корпус обеспечивает низкий уровень шума;

- не нуждаются в техническом обслуживании;

- обеспечивают автоматическое функционирование.

По сути, принцип работы схемы поршневого компрессора напрямую связан с изменением температуры газа, потому как изменение его объема зависит от факторов теплообмена между деталями компрессора, газом и окружающей средой.

Особенности схемы.

При сжатии воздуха по приведенной схеме выделяется большое количество тепла. Используя законы термодинамики, нетрудно показать, что если выделяемое тепло выпускать вместе со сжатым газом, то показатель параметра работы для данного процесса будет достаточно высок. Поэтому в целях экономии добавляют еще один элемент в схему (холодильник), предусматривая принудительное внешнее охлаждение, как правило, водяное или воздушное.

Надо сказать, что современные поршневые компрессоры имеют более сложную конструкцию (могут включать в себя большее количество цилиндров, или же несколько последовательно размещенных ступеней описанного устройства), но схема его работы остается неизменной.

Билет 24

По́ршень — деталь цилиндрической формы, совершающая возвратно поступательное движение внутри цилиндра и служащая для превращения изменения давления газа, пара или жидкости в механическую работу, или наоборот — возвратно-поступательного движения в изменение давления. В поршневом механизме, в отличие от плунжерного, уплотнение располагается на цилиндрической поверхности поршня, обычно в виде одного или нескольких поршневых колец. (Дисковые, открытые (тронковые), ступенчатые)

Клапан — устройство, предназначенное для открытия, закрытия или регулирования потока при наступлении определённых условий (повышении давления в сосуде, изменении направления тока среды в трубопроводе). Поток (ток) может быть потоком жидкости (вода, кровь, жидкие металлы и др.), газа (воздух, азот, углекислый газ и др.), электронов или других частиц в трубе, проводнике, полупроводнике, вакууме или другой среде.

(кольцевой, беспружинный полосовой, прямоточный)

Уплотнение — устройство, предотвращающее или уменьшающее утечку жидкости или газа через зазоры между деталями машин и сооружений, а также защищающее детали от проникновения грязи и пыли.

А – с плоскими металлическими кольцами

1- уплотняющее кольцо

2- замыкающее кольцо

3- пружина

4- дроссельное кольцо

5- предсальник

В – конические металлические уплотняющие элементы

1- внешнее уплотнительное кольцо

2- внутренние уплотнительные кольца

3- штифт

Г - конические пластмассовые уплотняющие элементы

1- уплотнительные кольца

2- дроссельное кольцо

3- нажимные кольца

4- стягивающая муфта 5- пружин

Билет 25

Подачей компрессора называют oбъем или массу газа, проходящего за единицу времени по линии всасывания или линии нагнетания компрессора. Расход газа на нагнетании всегда меньше, чем на всасывании, за счет утечек газа через неплотности.

Объемный расход газа обычно приводится к условиям всасывания (к давлению и температуре во всасывающей линии), нормальным условиям (давление 1013,25 гПа и температура 293,15°К) или стандартным условиям (1013,25 гПа и 293,15°К).

Потребителя интересует обычно количество газа, подаваемого ему от компрессора, приведенное к нормальным или стандартным условиям. Иногда эту подачу называют коммерческой.

Подача компрессора с одним цилиндром одинарного действия (см. рис. 3.3)

V = λ · VT · n,                              (3.13)

где λ - коэффициент подачи, зависящий от многих факторов; VT - объем описываемый поршнем за ход в одну сторону; n - число двойных ходов поршня в минуту (с возвращением в исходное положение).

Коэффициент подачи:

λ = λО · λГ · λТ · λР,                        (3.14)

где коэффициенты: λО - объемный;λГ - герметичности; λТ - температурный; λР — давления.

Объемный коэффициент отражает степень полноты использования объема цилиндра:

                           (3.15)

Здесь коэффициент ξ равен отношению давления в конце нагнетания к давлению в начале всасывания, а коэффициент а = Vм/VТ, то есть он является относительной величиной мертвого пространства. Коэффициент m - показатель политропы.

Коэффициент герметичности λГ это функция подачи компрессора от запаздывания закрытия клапанов, негерметичности уплотнений зазора между поршнем и цилиндром, уплотнений штоков у цилиндров двойного действия, негерметичности соединений рабочих каналов. Коэффициент герметичности обычно принимается в пределах 0,95...0,98.

Температурный коэффициент λТ отражает влияние нагрева газa при всасывании за счет теплообмена с горячими стенками цилиндра и каналов. При нагреве увеличивается объем газа, находящегося в цилиндре, и уменьшается полезный объем газа, поступающего в цилиндр из всасывающего патрубка.

Температурный коэффициент зависит от степени сжатия газа, поскольку от этого зависят температура нагнетаемого газа и температура стенок каналов и цилиндра. Ориентировочно температурный коэффициент можно найти с помощью следующего выражения:

λТ = 1 — 0,01 · (ξ - l).                    (3.16)

Коэффициент давления λР учитывает снижение подачи компрессора за счет уменьшения давления газа в цилиндре при всасывании по сравнению с давлением во всасывающем патрубке. В результате этого снижения давления газ расширяется, и в цилиндр входит меньшее его количество. На подачу влияет уменьшение давления не в начале, а в конце периода всасывания. Коэффициент давления обычно находится в пределах 0,95...0,98.

Билет 26

Мощность привода компрессора слагается из индикаторной мощности сжатия (Nинд), мощности, затрачиваемой на механические потери в механизмах компрессора (Nм1) и передачах от привода к компрессору (Nм2), и мощности (Nвсп), затрачиваемой на привод вспомогательных устройств (например, насосов системы смазки).

Таким образом, общая мощность привода равна

N = Nинд + Nм1 + Nм2 + Nвсп.          (3.20)

Индикаторная мощность (в кВт), затрачиваемая на сжатие газа, определяется по удельной индикаторной работе (Lинд):

                                   (3.21)

где - время в с.

Индикаторная работа определяется в зависимости от характера процесса сжатия (изотермический, адиабатический или политропический).

Индикаторная мощность многоступенчатого компрессора определяется как сумма индикаторных мощностей всех ступеней компрессора.

Мощность Nм1, затрачиваемая на механические потери в компрессоре, слагается из потерь мощности в опорах скольжения или качения, в местах трения в уплотнительных устройствах и у поршня.

Потери мощности Nм1 учитываются механическим КПД ηм1 который колеблется в пределах 0,9...0,93 для вертикальных компрессоров, 0,88...0,92 для горизонтальных компрессоров и 0,8...0,85 для небольших горизонтальных компрессоров.

Потери мощности в передаче Nм2 учитываются механическим КПД ηм2, который равен 0,9...0,95 для ременной передачи и 0,85...0,92 для зубчатой.

Мощность, затрачиваемая на привод вспомогательных механизмов Nвсп, определяется в зависимости от типа механизма и учитывается КПД ηвсп.

Мощность привода выбирают с запасом на 10...12% мощности компрессора.

Билет 27

Теоретически сжатие газа в поршневом компрессоре может проходить двумя процессами: изоэнтропический процесс и изотермический. На практике оказалось, что сжимать газ в компрессоре предпочтительнее при изотермическом процессе, так как этот процесс требует значительно меньше работы, нежели другие процессы сжатия. А это значит, что сжимаемый газ нужно постоянно охлаждать. Именно поэтому в процессе сжатия в рабочую полость впрыскивается охлаждающая жидкость (вода или компрессорное масло). За счет этого газ удается частично охладить. А опытным путем было определено, что при сжатии газа по изотермическому процессу можно сэкономить до 30% потребляемой мощности.

   Еще одним вариантом сжатия газа по изотермическому процессу является разделение процесса сжатия на несколько ступеней. Чаще всего это можно увидеть на поршневых компрессорах высокого давления, где после каждой ступени сжатия газ предварительно охлаждается в межступенчатом охладителе и только после охлаждения поступает в следующую ступень, где данный процесс повторяется. При этом КПД компрессора значительно увеличивается, а мощность, которую необходимо затратить на сжатие уменьшается (при этом необходимо равенство степеней повышения давления в каждой ступени).   Может сложится впечатление возможности создания огромного количества ступеней для того, что бы процесс сжатия был максимально приближен к изотермическому процессу. Но, так как с каждой новой ступенью у нас увеличиваются потери на мощности, усложняется конструкция и уменьшается ее надежность, то необходимо найти "золотую середу". Это позволит получить от компрессора необходимые параметры и значительно сэкономить на потребляемой мощности.

Билет 28

Использование водяного охлаждение компрессора уменьшает потребность в вентиляции компрессора, в связи с чем, большая часть выделяемого тепла компрессора отводится через охлаждающую жидкость. Такая система охлаждения компрессора отводит примерно 90% энергии, которая подводится к электродвигателю.

Системы охлаждения компрессора.

Система водяного охлаждения компрессора имеет несколько вариаций:

- Охлаждение компрессора с открытой системой без циркуляции воды

- Охлаждение компрессора с закрытой системой с циркуляцией воды

- Охлаждение компрессора с открытой системой с циркуляцией воды

Охлаждение компрессора с открытой системой без циркуляции воды

Вода, заполняемая воды в эту систему,  можно использовать городской водопровод, а так же природный водоем. После охлаждения компрессора вода выходит  в виде стоков. Для поддержки  стабильной температуры, а так же для регулирования потребления воды необходимо установить термостат. 

Открытая система охлаждения компрессора с системой без циркуляции воды достаточно проста и стоимость монтажа достаточно низка. Тем не менее, эксплуатация охлаждения компрессора данной системы обходится дорого, если охлаждающая вода поступает из городской водопроводной сети.  Использование вода из реки и озера бесплатно, но для того что бы данную воду использовать потребуется обязательно очистка и фильтрация.

В некоторых случаях, охладитель компрессора при использовании тапкой системы охлаждения компрессора может поломаться по причине высокого содержания извести в воде (использование такой воды приводит появлению накипи.)

В некоторых случаях в системе охлаждения компрессора можно использовать  соленую воду, с условием, что система охлаждения компрессора сконструирована и рассчитана соответствующим образом.

Охлаждение компрессора с закрытой системой с циркуляцией воды

В компрессоре, где используется замкнутая система охлаждения, вода постоянно циркулирует между охладителем и компрессором. Охладитель охлаждается водяным контуром или воздухом.

Для охлаждения воды воздухом применяется охлаждающая батарея, состоящая из пластин и труб. Для охлаждения компрессора в дополнение используют принудительную вентиляцию, которая включает в себя, от одного до нескольких вентиляторов.

 Для предотвращения засорения охладителя, воздух, прежде чем попасть в охладительную систему, обычно фильтруется. Этот метод применяют, при условии, что подача воды ограничена.

Если охлаждение воды происходит окружающим воздухом, то здесь необходимо добавление в воду антифриза. Данная система охлаждения компрессора должна заполняется очищенной смягченной водой.

Охлаждение компрессора с открытой системой с циркуляцией воды

Система охлаждения компрессора устроена таким образом, что компрессор отдает в систему нагретую жидкость, которая охлаждается в башенном охладителе.

Вода  в башенном охладителе разбрызгивается вверху в камере, через которую в тоже самое время продувается окружающий воздух. Часть воды при таком охлаждение компрессора   испаряется, а оставшаяся часть воды понижается до температуры ниже 2°С температуры окружающей среды.

Охлаждение компрессора с открытой системой циркуляции воды используются в местах с где есть затруднения с подачей свежей воды.

К недостаткам такой системы охлаждение компрессора относится загрязнение воды. Так с целью компенсации испарений воды в систему постоянно поступает свежая вода.

Билет 29

Расход сжатого газа обычно не вполне соответствует расчетному. Он может меняться в значительных пределах в зависимости от характера и условий работы потребителей. Поэтому давление в газосборнике меняется, так как объем его рассчитывается, главным образом, из условий выравнивания неравномерностей подачи газа поршнем, движущимся с переменной скоростью.

Только весьма кратковременное несоответствие между подачей компрессора и расходом может быть компенсировано воздухосборником (рессивером), который при возрастании давления принимает избыток газа, а при снижении — его отдает. Обычно же с уменьшением расхода газа потребителями давление в газосборнике увеличивается и может превысить пределы допустимого. Как известно, при подборе компрессора стремятся к тому, чтобы его номинальная подача немного превышала расход потребителя. Поэтому практически регулирование подачи, т. е. приведение подачи компрессора в соответствие с расходом газа потребителями, сводится к снижению подачи компрессора ниже номинальной.

Наиболее простым и удобным способом регулирования является изменение частоты вращения приводного вала компрессора. Однако этот способ применим только в том случае, если привод осуществляется от паровой машины или двигателя внутреннего сгорания.

При электроприводе, наиболее распространенном современном способе привода компрессоров, регулирование изменением частоты вращения оказывается неприемлемым как с конструктивных, так и с энергетических соображений. Если приводной двигатель работает с постоянной частотой вращения, то регулирование подачи компрессора может быть осуществлено следующими способами.

Регулирование за счет полного или частичного принудительного открытия всасывающих клапанов. Это приводит к полному или частичному переводу компрессора на холостой ход.

При полном открытии всасывающих клапанов сжатие газа в цилиндре не происходит и засасываемый газ снова выталкивается во всасывающую трубу. Если всасывающие клапаны закрываются неполностью или только на части хода поршня, то, подача газа уменьшается. В практике предпочтительнее, как из конструктивных, так и энергетических условий, применять полное открытие всасывающих клапанов на части хода поршня.

 

Регулирование за счет перепуска газа из нагнетательного трубопровода во всасывающий. Такой перепуск может быть свободным или дроссельным. При последнем способе регулирования происходит более плавное изменение подачи компрессора» но без уменьшения потребляемой мощности. Поэтому в практике чаще применяется более простой и более экономичный способ — свободный перепуск с помощью запасного вентиля.

Регулирование за счет дросселирования во всасывающем трубопроводе. Дросселирование вызывает падение давления  при всасывании компрессора. Следовательно, при неизменном давлении нагнетания степень сжатия будет увеличиваться, а объемный КПД будет уменьшаться. Естественно, при этом будет уменьшаться и подача компрессора. Но в соответствии с зависимостями и вследствие повышения степени сжатия будет увеличиваться расход энергии  на  каждый  килограмм сжатого газа. Поэтому применение указанного способа регулирования является неэкономичным.

Регулирование за счет подключения дополнительного вредного пространства. Если крышки цилиндра компрессора сделать пустотелыми и разделить полости на несколько ячеек, подключаемых к вредному пространству, или каким-либо иным путем подключить к вредному пространству некоторый регулируемый объем, то общий объем вредного пространства будет переменным. В этом случае регулирование объема вредного пространства будет заключаться в подключении или отключении части или всего дополнительного вредного пространства.

Увеличение объема вредного пространства, как это видно из зависимостей и, ведет к уменьшению объемного КПД и, следовательно, к уменьшению подачи компрессора. Однако при этом удельный расход энергии, как было показано ранее, не увеличивается. Такой способ регулирования является наиболее целесообразным.

Каждый из приведенных способов регулирования подачи компрессоров конструктивно разработан и может вводиться в действие вручную или автоматически с помощью различных устройств. В настоящее время автоматические способы регулирования разработаны с достаточной надежностью и поэтому ручное регулирование подачи компрессоров постепенно уступает место автоматическому.

Билет 30

Регулирование режима работы компрессора

Есть несколько методов регулирования уровня производительности компрессора, и они сильно разнятся и по затратам на реализацию, и по эффективности6

-Включение-выключение компрессорной установки.

-Сбрасывание лишнего воздуха в атмосферу.

-Подключение дополнительного объема.

-Работа «на холостом ходу».

-Дросселирование.

-Использование частотного преобразователя для регулирования частоты вращения электрического двигателя.

-Дискретный метод регулирования частоты вращения электрического двигателя.

Включение – выключение компрессорной установки является саамы элементарным способом регулирования производительности, предусматривающий отключение электродвигателя при повышении давления до максимального уровня и включение его при достижении минимально допустимого уровня давления. Во время простоя компрессора он не потребляет электроэнергию, что является позитивной стороной данного метода, но постоянные включения и выключения электродвигателя в целом негативно отражаются на работе системы и в результате могут повлечь за собой перегрев обмотки электродвигателя. Подобный способ чаще всего применяют по отношению к маломощным компрессорным установкам.

Сбрасывание излишков воздуха считается самым неэкономичным способом регулирования производительности, но несмотря на это, некоторые производственные предприятия все еще пользуются им. Суть метода заключается в наличии специального клапана, который открывают, как только давление в системе достигает максимальных показателей. Это крайне нерационально, так как в итоге весь энергоресурс, затраченный на сжатие данного воздуха, оказывается растраченным впустую. Поэтому такой способ целесообразно применять только в очень мощных компрессорных установках, в которых к тому же крайне редко достигается максимальный уровень давления.

Еще один способ регулирования производительности компрессора – подключение дополнительного «мертвого объема». Он применяется только для компрессоров поршневого типа и основан на использовании зазора, который всегда предусмотрительно оставляют между поршнем и крышкой цилиндра для того, чтобы компенсировать тепловые деформации. Если искусственно увеличивать этот так называемый «мертвый объем», производительность компрессора будет уменьшаться. Но этот способ также сложно отнести к экономичным, ведь сжатие воздуха, находящегося в «мертвом объеме», также требует энергозатрат.

В машинах роторного типа (винтовых, спиральных или пластинчато-роторных) применяется способ, при котором регулирование осуществляется посредством перехода на «холостой ход». Это стандартная методика регулирования производительности винтовых компрессоров – при достижении максимальных показателей давления в системе срабатывает реле, которое закрывает заслонку всасывающего клапана. При этом работа компрессора не останавливается, он продолжает потреблять около 20% обычного количества энергоресурсов, но давление в системе не нагнетается.

Существует также способ регулирования производительности, основанный на дросселировании. Он осуществляется с помощью пропорционального всасывающего клапана, который не дает давлению в системе повышаться сверх меры, перекрывая путь всасываемому воздуху посредством газодинамического сопротивления. Производительность компрессора при этом значительно понижается, а давление в системе вскоре достигает номинального уровня. Этот метод удобен тем, что система регулирует производительность практически самостоятельно – заслонка пропорционального всасывающего клапана открывается под влиянием давления воздуха в системе. Кроме того, он более эффективен, чем метод «холостого хода», но в то же время обходится дороже.

Самый удобный и экономичный способ регулирования производительности компрессорной установки, известны на сегодняшний день – это регулирование частоты вращения электродвигателя посредством использования частотного преобразователя. Потери энергии при использовании этого метода минимизируются, а пределы регулирования производительности расширяются и составляют от 20% до 100% (другие методы не создают такого широкого диапазона регулирования). Но в то же время этот способ является наиболее дорогостоящим. Он применим для всех компрессорных установок объемного типа, но его использование в установках динамического типа (осевых, центробежных и т.д.) нередко вызывает проблемы – может возникнуть резонанс с собственными частотами колебаний турбокомпрессора установки.

Похожим методом является дискретное регулирование частоты вращения электродвигателя, посредством которого регулируется общая производительность компрессора. Основное отличие от предыдущего метода заключается в том, что вместо плавного изменения скорости вращения вала здесь имеет место дискретное изменение, основанное на применении специальных многоскоростных двигателей. Это обходится значительно дешевле, чем использование частотного преобразователя, а эффективность почти равнозначная.

Билет 31

Вентилятор

В общем случае вентилятор — ротор, на котором определенным образом закреплены лопатки, которые при вращении ротора, сталкиваясь с воздухом, отбрасывают его. От положения и формы лопаток зависит направление, в котором отбрасывается воздух. Существует несколько основных видов по типу конструкции вентиляторов, используемых для перемещения воздуха:

осевые (аксиальные);

центробежные (радиальные);

диаметральные (тангенциальные) ;

Вентиляторы обычно используются как для перемещения воздуха — для вентиляции помещений, охлаждения оборудования, воздухоснабжения процесса горения (воздуходувки и дымососы). Мощные осевые вентиляторы могут использоваться как движители, так как отбрасываемый воздух, согласно третьему закону Ньютона, создает силу противодействия, действующую на ротор.

Осевой компрессор

В осевом компрессоре поток рабочего тела, как правило воздуха, движется условно вдоль оси вращения ротора компрессора.

Осевой компрессор состоит из чередующихся подвижных лопаточных решёток ротора, состоящих из лопаток закреплённых на валу и именуемых рабочими колёсами (РК), и неподвижных лопаточных решёток статора и именуемых направляющими аппаратами (НА). Совокупность, состоящая из одного рабочего колеса и одного направляющего аппарата именуется ступенью.

Пространство между соседними лопатками как в рабочем колесе, так и в направляющем аппарате именуется межлопаточным каналом. Межлопаточный канал в как в рабочем колесе, так и в направляющем аппарате диффузорный, то есть расширяющийся. Межлопаточный канал является расширяющимся, когда диаметр окружностей, вписанных в этот канал увеличивается при вписывании этих окружностей от передней кромки к задней.

Билет 32

Основные понятия гидропривода

Гидроприводом называется совокупность устройств, предназначенных для получения усилий и перемещений в механизмах и машинах посредством рабочей жидкости, находящейся под давлением

Основная функция гидропривода, как и механической передачи, — преобразование механической характеристики приводного двигателя в соответствии с требованиями нагрузки (преобразование вида движения выходного звена двигателя, его параметров, а также регулирование, защита от перегрузок и др.). Другая функция гидропривода — это передача мощности от приводного двигателя к рабочим органам машины (например, в одноковшовом экскаваторе — передача мощности от двигателя внутреннего сгорания к ковшу или к гидродвигателям привода стрелы, к гидродвигателям поворота башни и т.д.).

В общих чертах, передача мощности в гидроприводе происходит следующим образом:

Приводной двигатель передаёт вращающий момент на вал насоса, который сообщает энергию рабочей жидкости.

Рабочая жидкость по гидролиниям через регулирующую аппаратуру поступает в гидродвигатель, где гидравлическая энергия преобразуется в механическую.

После этого рабочая жидкость по гидролиниям возвращается либо в бак, либо непосредственно к насосу.

Билет 33

Рабочая жидкость (в гидроприводе) — жидкость, используемая как носитель энергии. В качестве рабочих жидкостей применяются минеральные, синтетические и полусинтетические масла, жидкости на силиконовой основе, водо-масляные эмульсии, масляно-водяные эмульсии.

Требования к рабочим жидкостям[править | править вики-текст]

Рабочие жидкости для гидросистем должны удовлетворять следующим требованиям:

вязкостью в требуемом диапазоне значений;

высоким индексом вязкости (минимальной зависимостью вязкости от температуры);

хорошими смазывающими свойствами;

химической инертностью к материалам, из которых сделаны элементы гидропривода;

высоким объёмным модулем упругости;

высокой устойчивостью к химической и механической деструкции;

высоким коэффициентом теплопроводности и удельной теплоёмкости и малым коэффициентом теплового расширения;

высокой температурой вспышки;

нетоксичностью.

Одна из функций рабочих жидкостей — защита деталей гидропривода от коррозии, поэтому рабочие жидкости обычно содержат антикоррозионные присадки. Другая функция рабочей жидкости — теплообмен между элементами гидросистемы, а также обмен теплом с окружающей средой. Также рабочие жидкости осуществляют надёжную смазку трущихся поверхностей деталей элементов гидросистемы.

Билет 34

Гидроцили́ндр (гидравли́ческий цили́ндр) — объёмный  HYPERLINK "https://ru.wikipedia.org/wiki/%D0%93%D0%B8%D0%B4%D1%80%D0%BE%D0%B4%D0%B2%D0%B8%D0%B3%D0%B0%D1%82%D0%B5%D0%BB%D1%8C" \o "Гидродвигатель" гидродвигатель возвратно-поступательного движения. Принцип действия гидроцилиндров во многом схож с принципом действия  HYPERLINK "https://ru.wikipedia.org/w/index.php?title=%D0%9F%D0%BD%D0%B5%D0%B2%D0%BC%D0%BE%D1%86%D0%B8%D0%BB%D0%B8%D0%BD%D0%B4%D1%80&action=edit&redlink=1" \o "Пневмоцилиндр (страница отсутствует)" пневмоцилиндров.

Внутреннее устройство одноштокового гидроцилиндра двустороннего действия можно посмотреть здесь

Гидроцилиндры одностороннего действия[править | править вики-текст]

Гидроцилиндр одностороннего действия

Выдвижение штока осуществляется за счёт создания давления рабочей жидкости в поршневой полости, а возврат в исходное положение от усилия пружины.

Усилие, создаваемое гидроцилиндрами данного типа, при прочих равных условиях меньше усилия, создаваемого гидроцилиндрами двустороннего действия, за счёт того, что при прямом ходе штока необходимо преодолевать силу упругости пружины.

Пружина выполняет здесь роль возвратного элемента. В тех случаях, когда возврат производится за счет действия приводимого механизма, другого гидроцилиндра или силы тяжести поднятого груза, гидроцилиндр может не иметь возвратной пружины ввиду отсутствия необходимости. Такой принцип действия применяется в бутылочных домкратах.

Гидроцилиндры двустороннего действия[править | править вики-текст]

Гидроцилиндр двустороннего действия

Как при прямом, так и при обратном ходе поршня усилие на штоке гидроцилиндра создаётся за счёт создания давления рабочей жидкости соответственно в поршневой и штоковой полости.

Следует иметь в виду, что при прямом ходе поршня усилие на штоке несколько больше, а скорость движения штока меньше, чем при обратном ходе, за счёт разницы в площадях, к которым приложена сила давления рабочей жидкости (эффективной площади поперечного сечения). Такие гидроцилиндры осуществляют, например, подъём-опускание отвала многих бульдозеров.

Телескопические гидроцилиндры[ HYPERLINK "https://ru.wikipedia.org/w/index.php?title=%D0%93%D0%B8%D0%B4%D1%80%D0%BE%D1%86%D0%B8%D0%BB%D0%B8%D0%BD%D0%B4%D1%80&veaction=edit&vesection=4" \o "Редактировать раздел \«Телескопические гидроцилиндры\»" править | править вики-текст]

Телескопический гидроцилиндр

Называются так благодаря конструктивному сходству с телескопом или подзорной трубой. Такие гидроцилиндры применяются в том случае, если при небольших размерах самого гидроцилиндра в исходном, т. е. сложенном, состоянии, необходимо обеспечить большой ход штока. Конструктивно представляют собой несколько цилиндров, вставленных друг в друга таким образом, что корпус одного цилиндра является штоком другого. Такие гидроцилиндры имеют исполнение как для одностороннего, так и для двустороннего действия.

Они осуществляют, например, подъём-опускание кузовов во многих самосвалах.

Дифференциальные гидроцилиндры[ HYPERLINK "https://ru.wikipedia.org/w/index.php?title=%D0%93%D0%B8%D0%B4%D1%80%D0%BE%D1%86%D0%B8%D0%BB%D0%B8%D0%BD%D0%B4%D1%80&veaction=edit&vesection=5" \o "Редактировать раздел \«Дифференциальные гидроцилиндры\»" править | править вики-текст]

Условное графическое обозначение дифференциального гидроцилиндра по ISO 1219

"Обычное" подключение поршневых гидроцилиндров двустороннего действия предусматривает поочередное подключение полостей гидроцилиндра к нагнетательной и сливной магистралям распределителем 4/2 или 4/3, что обеспечивает движение поршня за счет разности давлений. Соотношение скоростей движения, а также усилий при прямом и обратном ходе, различны и пропорциональны соотношению площадей поршня. Между скоростью и усилием устанавливается зависимость: выше скорость - меньше усилие, и наоборот.

"Кольцевая", или "дифференциальная" схема подключения. При рабочем ходе (выдвижении штока) жидкость от насоса подается в поршневую полость, вытесняемая же жидкость из штоковой полости, за счет кольцевого подключения (распределитель 3/2), направляется не в  HYPERLINK "https://ru.wikipedia.org/wiki/%D0%93%D0%B8%D0%B4%D1%80%D0%BE%D0%B1%D0%B0%D0%BA" \o "Гидробак" гидробак, а подается также в поршневую полость. В результате выдвижение штока происходит намного быстрее, чем в обычной схеме подключения (распределитель 4/2 или 4/3). Обратный ход (втягивание штока) происходит при подаче жидкости только в штоковую полость, поршневая соединена с гидробаком. При использовании гидроцилиндра с соотношением площадей поршня 2:1 (в некоторых источниках именно такие гидроцилиндры называются дифференциальными) такая схема позволяет получить равные скорости и равные усилия прямого и обратного ходов, что для гидроцилиндров с односторонним штоком без регулирования или дополнительных элементов получить невозможно.

Область применения[ HYPERLINK "https://ru.wikipedia.org/w/index.php?title=%D0%93%D0%B8%D0%B4%D1%80%D0%BE%D1%86%D0%B8%D0%BB%D0%B8%D0%BD%D0%B4%D1%80&veaction=edit&vesection=6" \o "Редактировать раздел \«Область применения\»" править | править вики-текст]

Гидроцилиндры широко применяют во всех отраслях техники, где используют объёмный гидропривод. Например, в строительно-дорожных, землеройных, подъёмно-транспортных машинах, в авиации и космонавтике, а также в технологическом оборудовании — металлорежущих станках, кузнечно-прессовых машинах.

Управление движением поршня и штока гидроцилиндра осуществляется с помощью  HYPERLINK "https://ru.wikipedia.org/wiki/%D0%93%D0%B8%D0%B4%D1%80%D0%B0%D0%B2%D0%BB%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D1%80%D0%B0%D1%81%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B8%D1%82%D0%B5%D0%BB%D1%8C" \o "Гидравлический распределитель" гидрораспределителя, либо с помощью средств регулирования гидропривода.

Билет 35

Плунжерный гидроцилиндр одностороннего принципа действия

1-гильза; 2- плунжер; 3- опора скольжения; 4- передняя проходная крышка, 5- уплотнительная манжета, 6- грязесъемное кольцо

• При подаче рабочей жидкости в полость гидроцилиндра, плунжер начинает выдвигаться. Максимальное развиваемое усилие F, Н

где p-максимально допустимое давление, Па;

А- площадь поперечного сечения плунжера, м2.

Обратное движение плунжера возможно при приложении внешней нагрузки или под действием массы плунжера (при вертикальном расположении гидроцилиндра).

Билет 36

Поршневые гидроцилиндры

По принципу действия подразделяются на поршневые цилиндры одностороннего действия ( а,б), двух стороннего ( в, г) . По числу штоков – с односторонним ( а,б, в) и двух стороннем штоком (г).

Гидроцилиндры двухстороннего действие

• Производят работу при прямом и обратном ходе штока. Перемещение штока осуществляется за счет попеременной подаче жидкости в одну из рабочих полостей гидроцилиндра.

 

Телескопические гидроцилиндры

Позволяют обеспечить большой рабочий ход, при небольших габаритных размерах . В корпусе располагается несколько гидроцилиндров, отличающиеся друг от друга по размерам.

действия и двустороннего действия.

Цилиндры одностороннего действия выдвигаются под воздействием гидравлического давления, а в исходное состояние возвращаются под воздействием внешней нагрузки или гравитации. Телескопические цилиндры используются в том случае, если имеется какая-либо нагрузка, которая, воздействуя на телескопический гидроцилиндр, возвращает его в исходное положение. Так, например, телескопические цилиндры используются на самосвалах, где под воздействием давления масла секции цилиндра (штоки гидроцилиндра) постепенно выдвигаются, а когда прекращается подача давления, под воздействием тяжести кузова секции телескопического гидроцилиндра складываются. Именно поэтому телескопические цилиндры одностороннего действия нашли применение в качестве исполнительного органа в опрокидывающем устройстве различных автомобилей, прицепов и полуприцепов тракторов и самосвалов. В свою очередь телескопические цилиндры также разделяются на 2 группы: безбуртовые и буртовые.

Гидроцилиндры двустороннего действия, как выдвигаются, так и возвращаются в исходное положение под действием давления масла. Процесс выдвижения аналогичен процессу телескопического гидроцилиндра одностороннего действия. А втягиваются секции благодаря тому, что масло, попадая между внутренним диаметром большей секции и внешним диаметром меньшей секции, за счет чего в этом объема образуется давление, которое и заставляет втягиваться меньшую секцию. После того, как меньшая секция втянется, тот же процесс начинается со следующей. Таким образом, автоматический процесс втягивания происходит до тех пор, пока телескопический гидроцилиндр не вернется в первоначальное положение.

Билет 37

Мембранный насосдиафрагменный насосдиафрагмовый насос — объёмный насос, рабочий орган которого — гибкая пластина (диафрагма, мембрана), закреплённая по краям; пластина изгибается под действием рычажного механизма (механический привод) или в результате изменения давления воздуха (пневматический привод) или жидкости (гидравлический привод), выполняя функцию, эквивалентную функции поршня в поршневом насосе.

ПРИМЕНЕНИЕ

химическая промышленность

нефтехимическая промышленность (перекачивание кислот, щелочей, нефтепродуктов)

лакокрасочная промышленность (краски, лаки, растворители и др.)

пищевая промышленность.

ПРИНЦИП РАБОТЫ

Принцип работы

Сжатый воздух, проникающий за одну из мембран, заставляет её сжиматься и продвигать жидкость в отверстие выхода. В это время вторая мембрана напротив создаёт вакуум, всасывая жидкость.

После прохождения импульса пневматический коаксиальный обменник меняет направление сжатого воздуха за вторую мембрану и процесс повторяется с другой стороны.

Спроектирован как дозатор с плунжерно-мембранным принципом дозирования. Вращающий момент вала электрического двигателя передается через механизм эксцентрика (передаточный механизм, шестерня) соединенный со штоком, непосредственно на мембрану. Механическая регулировка дозировки осуществляется путем изменения положения головки штока в эксцентрике, что влияет на ход штока, и соответственно, на количество жидкости, дозируемой за каждый такт.

ПРЕИМУЩЕСТВА МЕМБРАННЫХ НАСОСОВ

Надёжная простая конструкция — отсутствие двигателя и редуктора, нет вращающихся деталей

В качестве привода — энергия сжатого воздуха, отсутствие искрообразования, абсолютная безопасность при работе с горючими жидкостями

Компактные размеры и малый вес

Универсальность применения насосов — перекачка воды, вязких жидкостей, жидкостей с твердыми включениями до 12-15 мм в диаметре

В насосах нет уплотнений и подшипников — гарантия отсутствия утечек и износа основных деталей

Простота регулирования производительности от нуля до максимума посредством изменения количества подаваемого воздуха

Для работы насоса не требуется смазка механизмов и обслуживание

НЕДОСТАТКИ МЕМБРАННЫХ НАСОСОВ

Мембрана при работе значительно изгибается, что приводит к её быстрому разрушению.

Конструкция мембранного насоса предполагает использование клапанов, которые могут выйти из строя при их загрязнении.

Мембранные насосы

Мембранные насосы относятся к объемным насосам. Существуют одно- и двухмембранные насосы. Двухмембраные, обычно выпускаются с приводом от сжатого воздуха. На нашем рисунке показан именно такой насос. Насосы отличатся простотой конструкции, обладают самовсасыванием (до 9 метров), могут перекачивать химически агрессивные жидкости и жидкости с большим содержанием частиц. Принцип работы: Две мембраны, соединенные валом, перемещаются вперед и назад под воздействием попеременного нагнетания воздуха в камеры позади мембран с использованием автоматического воздушного клапана. Всасывание: Первая мембрана создает разрежение, когда она движется от стенки корпуса. Нагнетание: Вторая мембрана одновременно передает давление воздуха на жидкость, находящуюся в корпусе, проталкивая ее по направлению к выпускному отверстию. Во время каждого цикла давление воздуха на заднюю стенку выпускающей мембраны равно давлению, напору со стороны жидкости. Поэтому мембранные насосы  могут работать и при закрытом выпускном клапане без ущерба для срока службы мембраны.

Билет 38

ПЛУНЖЕРНЫЙ НАСОС

Плунжерный насос предназначен для работы с синусоидальным механизмом хода и плунжерной головкой насоса. Данное технологическое решение было выбрано с целью использования насоса для дозирования жидкостей. Электрический двигатель приводит в действие эксцентрик, оборудованный редукционной передачей и червяком, и подсоединённый к шатуну, который сопряжён с ползуном и плунжером. Простое вращение эксцентрика обеспечивает перемещения плунжера, и тем самым, производительность насоса. Изменение производительности и, следовательно, регулировки потока обеспечиваются с помощью механического устройства. Это устройство включает в себя перемещающийся качающийся рычаг, расположенный сверху; длина хода может регулироваться за счёт изменения перемещения ползуна. При этом эксцентрик свободно вращается вместе с шатуном.

Билет 39

Оседиагональные насосы (шнековые)

Шнековые насосы часто путают с винтовыми. Но это совершенно разные насосы, как можно увидеть в нашем описании. Рабочим органом является шнек. Насосы этого типа могут перекачивать жидкости средней вязкости (до 800 сСт), обладают хорошей всасывающей способностью (до 9 метров), могут перекачивать жидкости с крупными частицами (размер определяется шагом шнека). Применяются для перекачивания нефтешламов, мазутов, солярки и т.п. 

Насосы НЕСАМОВСАСЫВАЮЩИЕ. Для работы в режиме всасывания требуется заливка корпуса насоса и всего всасывающего шланга)

91. В импеллерном насосе перекачивание происходит при вращении гибкого резинового или пластикового ротора с лопастями, расположенного в овальном корпусе насоса.

Преимущества:

Самовсасывание до 5 метров.

Способность перекачивания вязких сред и сред с включениями.

Отсутствие полостей в рабочей камере.

Смена направления перекачивания.

Подходят для сред с твёрдыми включениями.

Недостатки:

Длительная работа "на сухую" губительна для рабочего колеса.

Ограничение по температуре перекачиваемой среды.

Ограничение по перекачиваемым средам.

Наличие изнашиваемых деталей.

Сложное и дорогое обслуживание.

 

Импеллерный насос

Импеллерный насос (ламельный, насос с мягким ротором) является разновидностью пластинчато-роторного насоса. Рабочим органом насоса является мягкий импеллер, посаженый с эксцентриситетом относительно центра корпуса насоса. За счет этого при вращении рабочего колеса изменяется объем между лопастями и создается разряжение на всасывании. Что происходит дальше видно на кратинке. Насосы являются самовсасывающими (до 5 метров).

Преимущество - простота конструкции.

 

Билет 40

Газлифт

Газлифт (от газ и англ. lift — поднимать), устройство для подъёма капельной жидкости за счёт энергии, содержащейся в смешиваемом с ней сжатом газе. Газлифт применяют главным образом для подъёма нефти из буровых скважин, используя при этом газ, выходящий из нефтеносных пластов. Известны подъёмники, в которых для подачи жидкости, главным образом воды, используют атмосферный воздух. Такие подъёмники называют эрлифтами или мамут-насосами.

В газлифте, или эрлифте, сжатый газ или воздух от компрессора подаётся по трубопроводу, смешивается с жидкостью, образуя газожидкостную или водо-воздушную эмульсию, которая поднимается по трубе. Смешение газа с жидкостью происходит внизу трубы.  Действие газлифта основано на уравновешивании столба газожидкостной эмульсии столбом капельной жидкости на основе закона сообщающихся сосудов. Один из них — буровая скважина или резервуар, а другой — труба, в которой находится газожидкостная смесь.

Эрлифт (англ. air — воздух, lift — поднимать) — разновидность струйного насоса. Состоит из вертикальной трубы, в нижнюю часть которой, опущенной в жидкость, вводят газ под давлением. Образовавшаяся в трубе эмульсия (смесь жидкости и пузырьков) будет подниматься благодаря разности удельных масс эмульсии и жидкости. Естественно, что эмульсия тем легче, чем в ней больше пузырьков.

Теория газлифта рассчитывает движение газожидкостной смеси в вертикальной трубе на основании дифференциального уравнения Бернулли для гомогенной сжимаемой среды.

Эрлифты применяются:

для подачи активного циркуляционного ила и подъёма сточной жидкости на небольшую высоту на канализационных очистных сооружениях;

для подачи химических реагентов на водопроводных очистных сооружениях;

для подачи воды из скважин;

наиболее важной отраслью применения эрлифтов является нефтедобывающая.

Опыт показал, что наряду с некоторыми недостатками (сравнительно малый кпд, невозможность подъёма жидкости с малой глубины), эрлифты обладают рядом достоинств, особенно сильно проявляющихся в очистных сооружениях:

простота устройства;

отсутствие движущихся частей;

возможность содержания взвеси в транспортируемой жидкости;

сжатый воздух из воздуходувок в качестве источника энергии[2].

Схема эрлифта: 1 — сепаратор; 2 — труба для подъёма эмульсии; 3 — труба для подачи воздуха; 4 — башмак; Н — высота подъёма водо-воздушной смеси; h — глубина погружения трубы.

Билет 41

Винтовой насос

Основной рабочей частью эксцентрикового шнекового насоса является винтовая (героторная) пара, которая определяет как принцип работы, так и все базовые характеристики насосного агрегата. Винтовая пара состоит из неподвижной части – статора, и подвижной – ротора. Статор – это внутренняя n+1-заходная спираль, изготовленная, как правило, из эластомера (резины), нераздельно (либо раздельно) соединенного с металлической обоймой (гильзой). Ротор – это внешняя n-заходная спираль, которая изготавливается, как правило, из стали с последующим покрытием или без него.

Стоит указать, что наиболее распространены в настоящее время агрегаты с 2-заходными статором и 1-заходным ротором, такая схема является классической практически для всех производителей винтового оборудования.

Важным моментом, является то, что центры вращения спиралей, как статора, так и ротора смещены на величину эксцентриситета, что и позволяет создать пару трения, в которой при вращении ротора внутри статора создаются замкнутые герметичные полости вдоль всей оси вращения. При этом количество таких замкнутых полостей на единицу длины винтовой пары определяет конечное давление агрегата, а объем каждой полости – его производительность.

Винтовые насосы относятся к объемным насосам. Эти типы насосов могут перекачивать высоковязкие жидкости, в том числе с содержанием большого количества абразивных частиц. Преимущества винтовых насосов: - самовсасывание (до 7...9 метров), - бережное перекачивание жидкости, не разрушающее структуру продукта, - возможность перекачивания высоковязких жидкостей, в том числе содержащих цастицы, - возможность изготовления корпуса насоса и статора из различных материалов, что позволяет перекачивать агрессивные жидкости. Насосы этого типа получили большое распространение в пищевой  и нефтехимической промышленности.

Билет 42

Струйный насос

Струйный насос предназначен для перемещения (откачки) жидкостей или газов с помощью сжатого воздуха (или жидкости и пара), подающегося через эжектор. Принцип работы насоса основан на законе Бернули (чем выше скорость течения жидкости в трубе, тем меньше давление этой жидкости). Этим обусловлена форма насоса. Конструкция насоса чрезвычайно проста и не имеет движущихся деталей. Насосы этого типа можно использовать в качестве вакуумный насосов или насосов для перекачивания жидкости (в том числе, содержащих включения) для работы насоса необходим подвод сжатого воздуха или пара. Струйные насосы, работающие от пара, называют пароструйными насосами, работающие от воды - водоструйными насосами. Насосы, отсасывающие вещество и создающие разряжение, называются эжекторами. Насосы нагнетающие вещество под давлением - инжекторами. 

Струйный насос — устройство для нагнетания (инжектор) или отсасывания (эжектор) жидких или газообразных веществ, транспортирования гидросмесей (гидроэлеватор), действие которого основано на увлечении нагнетаемого (откачиваемого) вещества струёй жидкости, пара или газа (соответственно различают жидкоструйные, пароструйные и газоструйные насосы).

Струйные насосы делятся на:

жидкостноструйные

эрлифты (аэрлифты)

ВОДОСТРУЙНЫЕ

Принцип действия водоструйного насоса или гидроэлеватора основан на передаче кинетической энергии рабочей жидкостью перекачиваемой жидкости. Рабочая жидкость обладает большим запасом кинетической энергии по сравнению с запасом энергии перекачиваемой жидкости. Достоинство гидроэлеваторов — простота устройства, небольшие габариты, надёжность работы; недостатки — низкий КПД и затраты большого количества вспомогательной воды под давлением.

Гидроэлеватор применяется, если необходимо поднять воду из колодца или скважины с глубины более, чем 8 м, но нет возможности применить погружной насос. В этом случае насос, установленный на поверхности, направляет часть выкачиваемой воды в водоструйный насос, расположенный в глубине скважины. На поверхность поднимается большее количество воды, чем было использовано. Таким образом, вода играет роль промежуточного энергоносителя и рабочего агента.

Из-за падения КПД с ростом глубины, такой насос не применяется для глубин более 16 м.

 

ЭРЛИФТЫ

Для подачи воды из глубинных скважин нашли применения пневматические подъёмники или эрлифты; они также удобны для подачи кислот и других химических жидкостей и смесей жидкостей с твёрдыми частицами (пульпы). Принцип работы заключается в том, что в водоподъёмную трубу, заключённую в обсадной трубе, через форсунку подается сжатый воздух от компрессора, в трубе при этом образуется смесь воздуха и воды. Движение водовоздушной смеси вверх происходит вследствие подъёмного действия пузырьков воздуха, которые опережают движение воды, проскальзывая через движущийся поток, увлекая за собой воду.

← Предыдущая
Страница 1
Следующая →

Скачать

НАСОС И КОМПРЕССОРЫ.docx

НАСОС И КОМПРЕССОРЫ.docx
Размер: 1.3 Мб

Бесплатно Скачать

Пожаловаться на материал

Гидравлический двигатель. Передача энергии. Мощность насоса. Буровой насос. Штанговые скважинные насосные установки. Насосы для поддержания пластового давления. Поршневой насос. Компенсатор. Диагностика поршневого насоса

У нас самая большая информационная база в рунете, поэтому Вы всегда можете найти походите запросы

Искать ещё по теме...

Похожие материалы:

Психолингвистика

Основным предметом исследования психолингвистики является речевая деятельность Объектом исследования психолингвистики выступают: человек как субъект речевой деятельности и носитель языка, процесс общения, коммуникации в человеческом обществе

Трудовое право: функции, принципы, понятие

ТД - трудовой договор. Шпаргалка. Трудовое право (ТП) - это самостоятельная отрасль права, регулирующая отношения в сфере наемного труда. Рынок труда

Отчёт по преддипломной практике. Кафедра информационных систем и технологий

Преддипломная практика проводилась с целью практического применения полученных в вузе теоретических знаний по общепрофессиональным и специальным дисциплинам.

Политические выборы

Ответы по экзамену Особенности участия в выборах рзличных уровней. Организационные уровни обеспечения избирательной кампании. Предвыборная программа

Криптографическая стойкость шифров

Криптографическая стойкость— способность криптографического алгоритма противостоять возможным атакам на него.

Сохранить?

Пропустить...

Введите код

Ok