Информатика. Шпоры

4.

Табличные процессоры

.

20.

Реляционные БД. Правила Кодда. Аномалии. Нормальные формы

.

12

Правил Кодда

Вопрос 22.

Компьютерные сети

.

Вопрос 23.

Базы данных. Классификация. Архитектура

.

Вопрос 31.

Парадигмы программирования. Языки программирования. Системы программирования

.

26.

Язык разметки HTML. Web-страницы. Создание

.

Вопрос 39.

История развития ВТ

.

3. 

Поколения ЭВМ

Вопрос 41.

Программное обеспечение ЭВМ

.

Вопрос 50. 

Информационная система (ИС)

.

Вопрос 28.

SQL. Команды определения данных

.

34.

Язык программирования Delphi

.

Вопрос 2.

Основные принципы функционирования ЭВМ. Основные структурные элементы современного компьютера. Функции и характеристики

.

Вопрос 47.

Динамическое программирование

.

О системном ПО и системах программирования

Что такое операционная система

Для чего нужны прикладные программы, понять несложно. А что же такое системное программное обеспечение?

Главной частью системного программного обеспечения является операционная система (ОС).

Операционная система - это набор программ, управляющих оперативной памятью, процессором, внешними устройствами и файлами, ведущих диалог с пользователем.

У операционной системы очень много работы, и она практически все время находится в рабочем состоянии. Например, для того чтобы выполнить прикладную программу, ее нужно разыскать во внешней памяти (на диске), поместить в оперативную память, найдя там свободное место, "запустить" процессор на выполнение программы, контролировать работу всех устройств машины во время выполнения и в случае сбоев выводить диагностические сообщения. Все эти заботы берет на себя операционная система.

Вот названия некоторых распространенных ОС для персональных компьютеров: MS-DOS, Windows, Linux.

Интерактивный режим

Во время работы прикладная программа сама организует общение с пользователем, но когда программа завершила работу, с пользователем начинает общаться операционная система. Это общение происходит в такой форме:

<приглашение> - <команда>.

ОС выводит на экран приглашение в какой-то определенной форме. В ответ пользователь отдает команду, определяющую, что он хочет от машины. Это может быть команда на выполнение новой прикладной программы, команда на выполнение какой-нибудь операции с файлами (удалить файл, скопировать и пр.), команда сообщить текущее время или дату и пр. Выполнив очередную команду пользователя, операционная система снова выдает приглашение.

Такой режим работы называется диалоговым режимом. благодаря ОС пользователь никогда не чувствует себя брошенным на произвол судьбы. Все операционные системы на персональных компьютерах работают с пользователем в режиме диалога. Режим диалога часто называют интерактивным режимом.

Сервисные программы

К системному программному обеспечению кроме ОС следует отнести и множество программ обслуживающего, сервисного характера. Например, это программы обслуживания дисков (копирование, форматирование, "лечение" и пр.), сжатия файлов на дисках (архиваторы), борьбы с компьютерными вирусами и многое другое.

Системы программирования

Кроме системного и прикладного ПО существует еще третий вид программного обеспечения. Он называется системами программирования (СП).

Система программирования - инструмент для работы программиста.

С системами программирования работают программисты. Всякая СП ориентирована на определенный язык программирования. Существует много разных языков, например Паскаль, Бейсик, ФОРТРАН, С ("Си"), Ассемблер, ЛИСП и др. На этих языках программист пишет программы, а с помощью систем программирования заносит их в компьютер, отлаживает, тестирует, исполняет.

В клиент-серверных ИС база данных и СУБД находятся на сервере, а на рабочих станциях находятся клиентские приложения.

В свою очередь, клиент-серверные ИС разделяют на двухзвенные и многозвенные.

В двухзвенных (англ. two-tier) ИС всего два типа «звеньев»: сервер баз данных, на котором находятся БД и СУБД (back-end), и рабочие станции, на которых находятся клиентские приложения (front-end). Клиентские приложения обращаются к СУБД напрямую.

В многозвенных (англ. multi-tier) ИС добавляются промежуточные «звенья»: серверы приложений (application servers). Пользовательские клиентские приложения не обращаются к СУБД напрямую, они взаимодействуют с промежуточными звеньями. Типичный пример применения многозвенности — современные веб-приложения, использующие базы данных. В таких приложениях помимо звена СУБД и клиентского звена, выполняющегося в веб-браузере, имеется как минимум одно промежуточное звено — веб-сервер с соответствующим серверным программным обеспечением.

Классификация по степени автоматизации

По степени автоматизации ИС делятся на:

автоматизированные: информационные системы, в которых автоматизация может быть неполной (то есть требуется постоянное вмешательство персонала);

автоматические: информационные системы, в которых автоматизация является полной, то есть вмешательство персонала не требуется или требуется только эпизодически.

«Ручные ИС» («без компьютера») существовать не могут, поскольку существующие определения предписывают обязательное наличие в составе ИС аппаратно-программных средств. Вследствие этого понятия «автоматизированная информационная система», «компьютерная информационная система» и просто «информационная система» являются синонимами.

Классификация по характеру обработки данныхПо характеру обработки данных ИС делятся на:

информационно-справочные, или информационно-поисковые ИС, в которых нет сложных алгоритмов обработки данных, а целью системы является поиск и выдача информации в удобном виде;

ИС обработки данных, или решающие ИС, в которых данные подвергаются обработке по сложным алгоритмам. К таким системам в первую очередь относят автоматизированные системы управления и системы поддержки принятия решений.

Классификация по сфере применения

Поскольку ИС создаются для удовлетворения информационных потребностей в рамках конкретной предметной области, то каждой предметной области (сфере применения) соответствует свой тип ИС. Перечислять все эти типы не имеет смысла, так как количество предметных областей велико, но можно указать в качестве примера следующие типы ИС:

Экономическая информационная система — информационная система, предназначенная для выполнения функций управления на предприятии.

Медицинская информационная система — информационная система, предназначенная для использования в лечебном или лечебно-профилактическом учреждении.

Географическая информационная система — информационная система, обеспечивающая сбор, хранение, обработку, доступ, отображение и распространение пространственно-координированных данных (пространственных данных).

Классификация по охвату задач (масштабности)

на транспортном уровне TCP. Прикладной уровень объединяет все службы, которые система предоставляет пользователю. К основным прикладным протоколам относятся: протокол удаленного досткпа telnet, протокол передачи файлов FTP, протокол передачи гипертекста HTTP, протоколы электронной почты: SMTP, POP, IMAP, MIME. 

Основным протоколом сети Интернет является сетевой протокол TCP/IP. Каждый компьютер, в сети TCP/IP (подключенный к сети Интернет), имеет свой уникальный IP-адрес или IP – номер. Адреса в Интернете могут быть представлены как последовательностью цифр, так и именем, построенным по определенным правилам. Компьютеры при пересылке информации используют цифровые адреса, а пользователи в работе с Интернетом используют в основном имена.Цифровые адреса в Интернете состоят из четырех чисел, каждое из которых не превышает двухсот пятидесяти шести. При записи числа отделяются точками, например: 195.63.77.21. Такой способ нумерации позволяет иметь в сети более четырех миллиардов компьютеров. Для отдельного компьютера или локальной сети, которые впервые подключаются к сети Интернет, специальная организация, занимающейся администрированием доменных имен, присваивает IP – номера.Первоначально в сети Internet применялись IP – номера, но когда количество компьютеров в сети стало больше чем 1000, то был принят метод связи имен и IP – номеров, который называется сервер имени домена (Domain Name Server, DNS). Сервер DNS поддерживает список имен локальных сетей и компьютеров и соответствующих им IP – номеров.В Интернете применяется так называемая доменная система имен. Каждый уровень в такой системе называется доменом. Типичное имя домена состоит из нескольких частей, расположенных в определенном порядке и разделенных точками. Домены отделяются друг от друга точками, например: www.lessons-tva.infoили tva.jino.ru. В Интернете доменная система имен использует принцип последовательных уточнений также как и в обычных почтовых адресах - страна, город, улица и дом, в который следует доставить письмо.Домен верхнего уровня располагается в имени правее, а домен нижнего уровня - левее. В нашем примере домены верхнего уровня info и ru указывают на то, что речь идет о принадлежности сайта www.lessons-tva.info к тематическому домену верхнего уровня info, а сайта tva.jino.ru к российской (ru) части Интернета. Но в России множество пользователей Интернета, и следующий уровень определяет организацию, которой принадлежит данный адрес. В нашем случае это компания jino.Интернет-адрес этой компании - jino.ru. Все компьютеры, подключенные к Интернету в этой компании, объединяются в группу, имеющую такой адрес. Имя отдельного компьютера или сети каждая компания выбирает для себя самостоятельно, а затем регистрирует его в той организации Интернет, которая обеспечивает подключение.Это имя в пределах домена верхнего уровня должно быть уникальным. Далее следует имя хоста tva, таким образом, полное имя домена третьего уровня: tva.jino.ru. В имени может быть любое число доменов, но чаще всего используются имена с количеством доменов от трех до пятиДоменная система образования адресов гарантирует, что во всем Интернете больше не найдется другого компьютера с таким же адресом. Для доменов нижних уровней можно использовать любые адреса, но для доменов самого верхнего уровня существует соглашение.В системе адресов Интернета приняты домены, представленные географическими регионами. Они имеют имя, состоящее из двух букв, например: Украина – ua. Россия – ru.

(*Это тоже комментарий*)

//Все символы до конца этой строки составляют комментарий

Слово Program со следующим за ним именем программы и точкой с запятой образуют заголовок программы. За заголовком следует раздел описаний, в котором программист (или Delphi) описывает используемые в программе идентификаторы. Идентификаторы обозначают элементы программы, такие как типы, переменные, процедуры, функции (об элементах программы мы поговорим чуть позже). Здесь же с помощью предложения, которое начинается зарезервированным словом uses (использовать) программист сообщает компилятору о тех фрагментах программы (модулях), которые необходимо рассматривать как неотъемлемые составные части программы и которые располагаются в других файлах. Строки

uses

Forms, Unit1 in 'Unitl.pas' {fmExample};

указывают, что помимо файла проекта в программе должны использоваться модули Forms И Unit1. модуль Forms является стандартным (т. е. уже известным Delphi), а модуль Unit1 - новым, ранее неизвестным, и Delphi в этом случае указывает также имя файла с текстом модуля (in 'uniti.pas') и имя связанного с модулем файла описания формы {fmExample}.

Собственно тело программы начинается со слова begin (начать) и ограничивается терминатором end с точкой. Тело состоит из нескольких операторов языка Object Pascal. В каждом операторе реализуется некоторое действие - изменение значения переменной, анализ результата вычисления, обращение к подпрограмме и т. п. В теле нашей программы - три исполняемых оператора:

Application.Initialize;

Application.CreateForm(TfmExample, fmExample);

Application.Run;

Каждый из них реализует обращение к одному из методов объекта Application. Я вынужден забежать вперед и хотя бы кратко пояснить только что введенные термины, которые определяют важные для Object Pascal понятия. Объектомназывается специальным образом оформленный фрагмент программы, заключающий в себе данные и подпрограммы для их обработки. Данные называются полями объекта, а подпрограммы - его методами. Объект в целом предназначен для решения какой-либо конкретной задачи и воспринимается в программе как неделимое целое (иными словами, нельзя из объекта “выдернуть” отдельное поле или метод). Объекты играют чрезвычайно важную роль в современных языках программирования. Они придуманы для того, чтобы увеличить производительность труда программиста и одновременно повысить качество разрабатываемых им программ. Два главных свойства объекта - функциональность и неделимость - делают его самостоятельной или даже самодостаточной частью программы и позволяют легко переносить объект из одной программы в другую. Разработчики Delphi придумали для нас с вами сотни объектов, которые можно рассматривать как кирпичики, из которых программист строит многоэтажное здание программы. Такой принцип построения программ называется объектно-ориентированным программированием (ООП). В объекте Application собраны данные и подпрограммы, необходимые для нормального функционирования Windows-программы в целом. Delphi автоматически создает объект-программу Application для каждого нового проекта. Строка

Application.Initialize;

означает обращение к методу Initialize объекта Application. Прочитав эту строку, компилятор создаст код, который заставит процессор перейти к выполнению некоторого фрагмента программы, написанного для нас разработчиками Delphi. После выполнения этого фрагмента (программисты

Следует отметить, что целые числа могут быть представлены не только в десятичной, но и в шестнадцатеричной системе счисления, т.е. в виде $xxxxxxxx, где x - один из символов 0, 1, ..., 8, 9, A, B, ..., E, F. К примеру, все цвета (точнее, их коды) представляются именно в виде шестнадцатеричных чисел.

Логические типы. С логическими выражениями и с логическим типом данных мы уже знакомы - это тип Boolean, принимающий значения True и False. Помимо Boolean существуют следующие логические типы: ByteBool, WordBool и LongBool. Однако последние введены лишь для обспечения совместимости с другими языками и системами программирования. Использовать рекомендуется только тип Boolean. Логическое значение в памяти занимает 1 байт. На самом деле, конечно, достаточно и одного бита, но оперировать ячейками меньше байта, мы, к сожалению, не можем.

Символьные типы. Символьные типы обеспечивают хранение отдельных символов. Основной тип данных - Char, который содержит символы с кодами 0..255. Существуют ещё типы AnsiChar и WideChar. Тип AnsiChar эквивалентен типу Char, т.е. по сути это один и тот же тип. Занимает в памяти 1 байт. Для кодирования символов используется код ANSI (American National Standards Institute). Тип WideChar кодируется международным кодом Unicode и занимает в памяти 2 байта. Таблица Unicode включает символы практически всех языков мира.

Вещественные типы. Из названия следует, что эти типы используются для хранения вещественных, т.е. действительных чисел. Отличаются они границами допустимых значений и точностью, т.е. числом цифр после запятой. Вот эти типы:

Real (он же Double) - значения от 5.0x10^-324 до 1.7x10^308, точность - 15-16 цифр, занимает в памяти 8 байт.

Real48 - значения от 2.9x10^-39 до 1.7x10^38, точность - 11-12 цифр, 6 байт памяти.

Single - значения от 1.7x10^-45 до 3.4x10^38, точность - 7-8 цифр, 4 байта.

Extended - от 3.6x10^-4951 до 1.1x10^4932, точность - 19-20 цифр, 10 байт памяти.

Comp - от -2x10^63+1 до 2x10^63-1, точность - 19-20 цифр, 8 байт.

Currency - от -922337203685477.5808 до 922337203685477.5807, точность - 19-20 цифр, в памяти занимает 8 байт.

Как и в случае с целыми числами, перед вещественными числами может стоять знак "+" или "-".

Существует 2 формы записи вещественных чисел - с фиксированной точкой и с плавающей.

Запись с фиксированной точкой представляет собой обычную запись, в которой целая и дробная части отделены друг от друга точкой/запятой.

Запись с плавающей точкойподразумевает запись порядка числа, который отделяется от самого числа буквой "E" (запись "e" тоже допустима). Например, запись 1.5e2 означает число 1.5 с порядком +2, т.е. это 1.5x10^2 = 150.

устройства вывода. Устройство управления и арифметико-логическое устройство в современных компьютерах объединены в один блок - процессор, являющийся преобразователем информации, поступающей из памяти и внешних устройств (сюда относятся выборка команд из памяти, кодирование и декодирование, выполнение различных, в том числе и арифметических, операций, согласование работы узлов компьютера). Более детально функции процессора будут обсуждаться ниже.

Память (ЗУ) хранит информацию (данные) и программы. Запоминающее устройство у современных компьютеров «многоярусно» и включает оперативное запоминающее устройство (ОЗУ), хранящее ту информацию, с которой компьютер работает непосредственно в данное время (исполняемая программа, часть необходимых для нее данных, некоторые управляющие программы), и внешние запоминающие устройства (ВЗУ) гораздо большей емкости, чем ОЗУ. но с существенно более медленным доступом (и значительно меньшей стоимостью в расчете на 1 байт хранимой информации). На ОЗУ и ВЗУ классификация устройств памяти не заканчивается - определенные функции выполняют и СОЗУ (сверхоперативное запоминающее устройство), и ПЗУ (постоянное запоминающее устройство), и другие подвиды компьютерной памяти.

В построенной по описанной схеме ЭВМ происходит последовательное считывание команд из памяти и их выполнение. Номер (адрес) очередной ячейки памяти. из которой будет извлечена следующая команда программы, указывается специальным устройством - счетчиком команд в УУ. Его наличие также является одним из характерных признаков рассматриваемой архитектуры. Разработанные фон Нейманом основы архитектуры вычислительных устройств оказались настолько фундаментальными, что получили в литературе название «фон-неймановской архитектуры». Подавляющее большинство вычислительных машин на сегодняшний день - фон-неймановские машины. Исключение составляют лишь отдельные разновидности систем для параллельных вычислений, в которых отсутствует счетчик команд, не реализована классическая концепция переменной и имеются другие существенные принципиальные отличия от классической модели (примерами могут служить потоковая и редукционная вычислительные машины).

По-видимому, значительное отклонение от фон-неймановской архитектуры произойдет в результате развития идеи машин пятого поколения, в основе обработки информации в которых лежат не вычисления, а логические выводы. В основу построения подавляющего большинства компьютеров положены следующие общие принципы, сформулированные в 1945 г. американским ученым Джоном фон Нейманом.

1. Принцип программного управления. Из него следует, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.

Выборка программы из памяти осуществляется с помощью счетчика команд. Этот регистр процессора последовательно увеличивает хранимый в нем адрес очередной команды на длину команды. А так как команды программы расположены в памяти друг за другом, то тем самым организуется выборка цепочки команд из последовательно расположенных ячеек памяти. Если же нужно после выполнения команды перейти не к следующей, а к какой-то другой, используются команды условного или безусловного переходов, которые заносят в счетчик команд номер ячейки памяти, содержащей следующую команду. Выборка команд из памяти прекращается после достижения и выполнения команды "стоп". Таким образом, процессор исполняет программу автоматически, без вмешательства человека.

Основным элементом регистра является электронная схема, называемая триггером, которая способна хранить одну двоичную цифру (разряд).

Регистр представляет собой совокупность триггеров, связанных друг с другом определённым образом общей системой управления. Существует несколько типов регистров, отличающихся видом выполняемых операций. Некоторые важные регистры имеют свои названия, например:

сумматор – регистр АЛУ, участвующий в выполнении каждой операции;

счетчик команд – регистр УУ, содержимое которого соответствует адресу очередной выполняемой команды; служит для автоматической выборки программы из последовательных ячеек памяти;

регистр команд – регистр УУ для хранения кода команды на период времени, необходимый для ее выполнения. Часть его разрядов используется для хранения кода операции, остальные – для хранения кодов адресов операндов. Память компьютера построена из двоичных запоминающих элементов – битов, объединенных в группы по 8 битов, которые называются байтами. (Единицы измерения памяти совпадают с единицами измерения информации). Все байты пронумерованы. Номер байта называется его адресом.

Бит (BIT) есть не что иное, как аббревиатура от BInary digiT, придуманная в 1946 году выдающимся американским ученым-статистиком Джоном Тьюки. Он был советником пяти президентов Соединенных Штатов. Тьюки изобрал бит для обозначения одного двоичного разряда, способного принимать значение 0 или 1. Байты могут объединяться в ячейки, которые называются также словами. Для каждого компьютера характерна определенная длина слова – два, четыре или восемь байтов. Это не исключает использования ячеек памяти другой длины (например, полуслово, двойное слово).

Как правило, в одном машинном слове может быть представлено либо одно целое число, либо одна команда. Однако, допускаются переменные форматы представления информации.

Будем предполагать, что состояние  в которое перешла система  зависит от данного состояния  и выбранного управления  и не зависит от того, каким образом система  перешла в состояние 

Далее, будем считать, что если в результате реализации го шага обеспечен определённый доход, также зависящий от исходного состояния системы  и выбранного управления  равный  то общий доход за  шагов составляет

где 

Таким образом, сформулированы два условия, которым должна удовлетворять рассматриваемая задача динамического программирования. Первое условие обычно называют условием отсутствия последействий, а второе – условием аддитивности целевой функции задачи оптимизации.

Задача оптимизации в этом случае состоит в отыскании оптимальной стратегии управления, т.е. такой совокупности управлений

в результате реализации которых система  за  шагов переходит из начального состояния  в конечное  и при этом функция дохода  принимает наибольшее значение.

Метод динамического программирования основан на применении принципа оптимальности Беллмана: каково бы ни было состояние системы перед очередным шагом, необходимо выбирать управление на этом шаге так, чтобы доход на данном шаге вместе с оптимальным доходом на всех последующих шагах был максимальным.

Из принципа оптимальности следует, что оптимальную стратегию управления можно получить, если сначала найти оптимальную стратегию управления на ом шаге, затем на двух последних шагах, затем на трёх последних шагах и т. д., вплоть до первого шага. Таким образом, решение рассматриваемой задачи динамического программирования целесообразно начинать с определения оптимального решения на последнем, ом шаге. Для того чтобы найти это решение, очевидно, нужно сделать различные предположения о том, как мог окончиться последний шаг, и с учётом этого

В качестве сервера обычно используется высокопроизводительный компьютер с большим ОЗУ и винчестером (или даже несколькими винчестерами) большой емкости. Клавиатура и дисплей для сервера сети не обязательны, поскольку они используются очень редко (для настройки сетевой ОС). Все остальные компьютеры называются рабочими станциями. Рабочие станции могут не иметь винчестерских дисков или даже дисководов вовсе. Такие рабочие станции называют бездисковыми. Первичная загрузка ОС на бездисковые рабочие станции происходит по локальной сети с использованием специально устанавливаемых на сетевые адаптеры рабочих станций микросхем ПЗУ, хранящих программу начальной загрузки. ЛС в зависимости от назначения и технических решений могут иметь различные конфигурации (или, как еще говорят, архитектуру, или топологию), изображенные на рис. 5.1.

В кольцевой ЛС информация передается по замкнутому каналу. Каждый абонент непосредственно связан с двумя ближайшими соседями, хотя в принципе способен связаться с любым абонентом сети.

В звездообразной (радиальной) ЛС в центре находится центральный управляющий компьютер, последовательно связывающийся с абонентами и связывающий их друг с другом.

В шинной конфигурации компьютеры подключены к общему для них каналу (шине), через который могут обмениваться сообщениями.

В древовидной - существует «главный» компьютер, которому подчинены компьютеры следующего уровня, и т.д.

Кроме того, возможны конфигурации без отчетливого характера связей; пределом является полносвязная конфигурация, когда каждый компьютер в сети непосредственно связан с любым другим компьютером.

В крупных ЛС предприятий и учреждений чаще всего используется шинная (линейная) топология, соответствующая архитектуре многих административных зданий, имеющих длинные коридоры и кабинеты сотрудников вдоль них. Для учебных целей в КУВТ чаще всего используют кольцевые и звездообразные ЛС.

В любой физической конфигурации поддержка доступа от одного компьютера к другому, наличие или отсутствие выделенного компьютера (в составе КУВТ его называют «учительским», а остальные - «ученическими»), выполняется программой - сетевой операционной системой, которая по отношению к ОС отдельных компьютеров является надстройкой. Для современных высокоразвитых ОС персональных компьютеров вполне характерно наличие сетевых возможностей (например, OS/2, WINDOWS'95-98).

Процесс передачи данных по сети определяют шесть компонент:

• компьютер-источник;

• блок протокола;

• передатчик;

• физическая кабельная сеть;

• приемник;

• компьютер-адресат.

В еще менее традиционной и необычной логической парадигме программа рассматривается как множество логических формул: аксиом (фактов и правил), описывающих свойства некоторых объектов, и теоремы, которую необходимо доказать. В свою очередь, выполнение программы – это доказательство теоремы, в ходе которого строится объект с описанными свойствами.

Основные различия указанных парадигм касаются не только концепции программы, но и роли переменной. В отличие от императивных программ, в функциональных и логических программах отсутствует явное присваивание значений переменным и, как следствие, побочные эффекты. Переменные в таких программах подобны переменным в математике: они являются обозначением функциональных аргументов или объктов, конструируемых в процессе доказательства. Еще одна яркая особенность функциональной и логической парадигм – использование рекурсии вместо циклов.

В получающей все большее распространение объектно-ориентированной парадигме программа описывает структуру и поведение вычисляемых объектов и классов объектов. Объект обычно включает некоторые данные (состояние объекта) и операции с этими данными (методы), описывающие поведение объекта. Классы представляют множество объектов со схожей структурой и схожим поведением. Обычно описание классов имеет иерархическую структуру, включающую полиморфизм операций. Выполнение объектно-ориентированной программы представляет собой обмен сообщениями между объектами, в результате которого они меняют свои состояния.

Персональные компьютеры. Подлинную революцию в вычислительной технике произвело создание микропроцессора. В 1971 г. компанией “Intel” (США) было создано устройство, реализующее на одной крошечной микросхеме функции процессора – центрального узла ЭВМ. Последствия этого оказались огромны не только для вычислительной техники, но и для научно-технического прогресса в целом. В области разработки ЭВМ первым таким последствием оказалось создание персональных компьютеров (ПК) -небольших и относительно недорогих ЭВМ, способных аккумулировать и усиливать интеллект своего персонального хозяина (впрочем, заметим, что как и всякое техническое средство, ПК способен и на обратный эффект – напрасно отнимать время и подавлять интеллект).

Небольшие компьютеры, предназначенные для одного пользователя, который в каждый момент решает не более одной задачи, использовались в профессиональной деятельности уже в начале 70-х годов. Восьмиразрядные микропроцессоры i8080 и Z80 в сочетании с операционной системой СР/М позволили создать ряд таких компьютеров, но тем не менее началом эры их массового появления стал 1976 г., когда появился знаменитый “Apple” (“Яблоко”), созданный молодыми американскими инженерами Стивом Возняком и Стивом Джобсом. За несколько лет было продано около 2 млн. экземпляров лишь этих ПК (особенно “Apple-2”), т.е. впервые в мировой практике компьютер стал устройством массового производства. Вскоре лидерство в этой области захватила фирма IBM – компьютерный гигант, представивший в 1981 г. свой персональный компьютер IBM PC (PC – persona computer). Его модели PC XT (1983 г.).PC AT (1984 г.), ПК с микропроцессором Pentium (начало 90-х годов; содержит более 3 миллионов транзисторов!) стали, каждый в свое время, ведущими на мировом рынке ПК. В настоящее время производство ПК ведут десятки фирм (а комплектующие выпускают сотни фирм) по всему миру.

Ближайшим конкурентом компьютеров IBM PC являются персональные компьютеры фирмы “Apple Computer”. Пришедшие на смену “Apple-2” машины “Macintosh” широко используются в системах образования многих стран.

В дальнейшем, по мере знакомства с архитектурой ЭВМ, рассказ о ПК будет продолжен. Сейчас же уточним характеристики, которые в совокупности позволяют отнести компьютер к этой группе: • относительно невысокая стоимость (доступная для приобретения в личное пользование значительной частью населения):• наличие “дружественных” операционной и интерфейсной систем, которые максимально упрощают пользователю работу с компьютером;• наличие достаточно развитого и относительно недорогого набора внешних устройств в “настольном” исполнении;• наличие аппаратных и программных ресурсов общего назначения, позволяющих решать реальные задачи по многим видам профессчональной деятельности. уже сменилось несколько их поколении: 8-битные, 16-битные, 32-битные. Многократно усовершенствовались внешние устройства, все операциональное окружение, включая сети, системы связи, системы программирования, программное обеспечение и т.д. Персональный компьютер занял нишу “персонального усилителя интеллекта”.

Вопрос 30.

SQL. Команды управления данными

.

Вопрос 35.

Методы сортировки и поиска. Алгоритмы и программы

.

42.

Симплекс-метод

.

Вопрос 37.

Язык JAVA-Script

.

Вопрос 44.

Исследование операций

.

Вопрос 32.

Кодирование информации

.

Вопрос 12.

Компьютерное моделирование в экологии

.

Вопрос 45.

Машинно-ориентированные языки программирования. Арифметические команды и команды условного перехода в ассемблере

.

43.

Компьютерное моделирование физических процессов

.

Вопрос 33.

Массивы в ООП-языках. Примеры использования

.

Вопрос 51.

Рекурсивно-логическое программирование. Пролог. Основные принципы работы с базами знаний

.

Вопрос 48.

Работа со списками в Прологе

.

Вопрос 36.

Основные концепции ООП

.

← Предыдущая
Страница 1
Следующая →

Файл

остальные шпоры.docx

остальные шпоры.docx
Размер: 591 Кб

.

Пожаловаться на материал

В информатике совокупность взаимосвязанных данных называется информационной структурой. Компьютерные сети. Языки программирования. Язык разметки HTML. ЭВМ. Информационная система

У нас самая большая информационная база в рунете, поэтому Вы всегда можете найти походите запросы

Искать ещё по теме...

К данному материалу относятся разделы:

Табличные процессоры

Реляционные БД. Правила Кодда. Аномалии. Нормальные формы

Правил Кодда

Компьютерные сети

Базы данных. Классификация. Архитектура

Парадигмы программирования. Языки программирования. Системы программирования

Язык разметки HTML. Web-страницы. Создание

История развития ВТ

Поколения ЭВМ

Программное обеспечение ЭВМ

Информационная система (ИС)

SQL. Команды определения данных

Язык программирования Delphi

Основные принципы функционирования ЭВМ. Основные структурные элементы современного компьютера. Функции и характеристики

Динамическое программирование

SQL. Команды управления данными

Методы сортировки и поиска. Алгоритмы и программы

Симплекс-метод

Язык JAVA-Script

Исследование операций

Кодирование информации

Компьютерное моделирование в экологии

Машинно-ориентированные языки программирования. Арифметические команды и команды условного перехода в ассемблере

Компьютерное моделирование физических процессов

Массивы в ООП-языках. Примеры использования

Рекурсивно-логическое программирование. Пролог. Основные принципы работы с базами знаний

Работа со списками в Прологе

Основные концепции ООП

Похожие материалы:

Оценка стоимости бизнеса

Учебно-методический комплекс «Оценка стоимости бизнеса». Рекомендуется для направления подготовки «Экономика» Профиль «Финансы и кредит»

Рынок труда и безработица. Государственная политика занятости

Курсовая работа по дисциплине МАКРОЭКОНОМИКА.

Господарство та економічна думка суспільств Європейської цивілізації в період середньовіччя (V – XV ст. ст.)

Загальна характеристика  економіки Східної та Західної  цивілізації.  Структура феодального суспільства, суть рентних відносин та їх види.  Особливості господарського розвитку суспільств Європейської цивілізації  у V-Х ст.  Господарська система та економічна думка Західної Європи в ХІ – ХV ст.  Розвиток феодального землеволодіння та його форм в Україні.  

Сирожа Рупоров «Сегодня портрет мой таков»

Р 82 Рупоров, С. «Сегодня портрет мой таков»: Стихотворения / С. Рупоров. – Фокино мку цбс…., 2015. – С. Неизвестный и невиданный персонаж  в новомодной русской поэзии. Человек из потаенных и преступных кварталов любого российского городка.

Гражданское право

Предмет российского гражданского права. Гражданский кодекс Российской Федерации (ГК РФ). Гражданско-правовые нормативные акты, действие закона. Правоспособность юридического лица. Хозяйственные общества. Имущество. Сделки, сроки, исковая давность, представительство в гражданском праве. Венская конвенция. Осуществление гражданских прав. Право собственности, гражданско-правовые договора, понятие договора купли-продажи. Договоры и его виды.

Сохранить?

Пропустить...

Введите код

Ok