Гістологія. Шпори на іспит

Арендный блок

1)Клітинна теорія. Основні положення: 1.Клітина- елементарна жива система.

2.Клітини різних організмів подібні за своєю будовою.

3.Розмноження клітин відбувається шляхом поділу вихідної клітини.

4.Клітина частина цілісного організму.

2)Клітина – це елементарна жива система, яка складається з плазмолеми, цитоплазми та ядра і є основою будови, розвитку, функціонування, пристосування, відтворення та відновлення цілого організму.

3)Поверхневим комплексом клітини є клітинна оболонка (плазмолема). В основі будови плазмолеми  знаходиться елементарна біологічна мембрана. Елементами клітинної оболонки є: глікокалікс,внутрішня пластинка - підмембранний або кортикальний шар цитоплазми і власне біологічна мембрана. Структуру описує модель Сінгер-Нікольсона: подвійний шар фосфоліпідів (гідрофобними кінцями всередину), який пронизують білки (інтегральні, периферійні), над поверхнею біомембрани розташовані глюкопротеїди і гліколіпіди.  Функції: розмежування внутрішнього вмісту клітини від її мікрооточення, транспорт метаболітів, примембранний метаболізм, рецепція сигналів з боку зовнішнього середовища, забезпечення взаєморозпізнавання і взаємодії клітини з утворенням міжклітинних контактів

4) Поверхневим комплексом клітини 

Див 3

5)Міжклітинні контакти. Найпростіша форма  міжклітинного зв’язку має назву  адгезії (прилипання,злипання). Один із можливих шляхів зміцнення міжклітинних контактів - збільшення площі контактних ділянок двох сусідніх клітин. Подальше зміцнення зв’язку між клітинами досягається шляхом іммобілізації (знерухомлення) поверхні сусідніх ділянок плазмолеми клітин, що контактують,за допомогою проміжних філаментів і кортикального шару цитоплазми. Такий тип зв’язку між клітинами має назву десмосоми. У місцях контакту епітеліальних клітин з базальною утворюють структури,які мають назву напівдесмосом. Щільний замикальний контакт,у його ділянці відбувається максимальне зближення плазматичних мембран сусідніх клітин. Він характерний для апікальної поверхні клітин,що вистеляють травний канал. Щілинний контакт або нексус забезпечує безпосередній обмін молекулами між сусідніми клітинами. Синапс - спеціалізований контакт між нервовими клітинами.

6)Органели-постійні структури цитоплазми ,які мають певну будову і виконують спеціалізовану ф-ю. Мікроскопічні і субмікроскопічні. Мембранні й не мембранні. До мембранних органел належать: мітохондрії,  лізосоми,пероксисоми, ЕПС, КГ. Немембранними органелами є протеасоми, рибосоми, мікрофіламенти, мікротрубочки, центросома. Ці 10 органел називають органелами загального призначення. Ці органели можуть утворювати характерні конгломерати у цитоплазмі клітин.

7) Мембранними органелами є  лізосоми, мітохондрії, пероксисоми, ЕПС, КГ. Комплекс Гольджі мембранна органела загального призначення,в якій завершується процес формування продуктів синтетичної діяльності клітини. КГ нагромаджує секреторні речовиниі забезпечує їх виведення за межі клітини. Має вигляд цистерн і трубочок.

8).ЕПС  -субмікроскопічна мембранна органела загального призначення,яка утворює єдину внутрішньо цитоплазматичну циркуляційну систему. Розрізняють гранулярну і агранулярну ЕПС. Агранулярна ЕПС утворена лише мембраною. Ф-я гранулярної ЕПС пов’язана з метаболізмом ліпідів і вуглеводів, детоксикацією шкідливих для клітин хімічних сполук, а також депонування іонів Са. Гранулярна ЕПС утворена біомембраною, до якої збоку гіалоплазми прикріплені рибосоми. Ф-я зумовлена наявністю рибосом і полягає у біосинтезі білків.  

21. Ядерце – це найщільніша структура ядра, яка добре помітна у живій нефарбованій клітині. Форма ядерець сферична, розмір 1-5 мкм. Ядерце добре фарбується основними барвникам через велику кількість РНК. Кількість ядерець відповідає хромосомному набору, тому у диплоїдних клітин їх зазвичай 2 на одне ядро. Ядерце – це не самостійна структура, а похідне хромосом. Вони містять ядерцеві організатори, що містяться в зонах вторинних перетяжках. В ядерці утворюються рРНК та субодиниці рибосом.  Субмікроскопічна будова ядерця: наявність гранул діаметром 15-20 нм і фібрил товщиною 6-8 нм. Навколо ядерця знаходяться компактна зона приядерцевогогетерохроматину.

22. Індекс Гертвіга, або ядерно-цитоплазматичне співвідношення – це постійне співвідношення між об’ємами ядра і цитоплазми.  Залежно від значення цього індексу клітини поділяють на ядерні (з великим індексом Гертвіга) і цитоплазматичні (з малим ІГ).

23. Клітинний цикл – це весь період існування клітини від поділу до поділу, або від поділу до смерті.  Весь клітинний цикл поділяють на власне мітоз (М), пресинтетичний (G1), синтетичний (S) та постсинтетичний (G2) періоди. В G1 періоді починається підготовка клітин до синтезу ДНК, синтезуються ферменти, необхідні для синтезу ДНК, метаболізму РНК і білка. В S періоді подвоюється кількість ДНК та центріолей клітинного центру. В G2 періоді відбувається синтез іРНК, рибосом, тубулінів. Власне мітоз поділяється на 4 фази: профазу, метафазу, анафазу і телофазу.  Після завершення телофази утворюються дві дочірніх ідентичних клітини, які переходять в новий G1 період.

24. Репродукція клітин полягає в їх розмноженні. Це одне з найважливіших біологічних явищ і є проявом загальної закономірності, яка полягає в тому, що неодмінною умовою існування біологічних систем протягом досить довгих проміжків часу є їхня продукція. Розмноження клітин здійснюється шляхом поділу вихідної клітини. Це положення є одним з основних у клітинній теорії.

25. Хромосоми  - це щільні паличко- або ниткоподібні тільця, які фарбуються базофільно. Поява хромосом – найхарактерніша ознака поділу клітини. Морфологію Х найкраще вивчати під час метафази. Кожна Х складається з 2 хроматид. У кожній Х є звужене місце – первинна перетяжка. Відповідно до її розміщення хромосоми поділяються на метацентричні, субметацентричні та аероцентричні. У центрі ПП знаходиться кінетохор- центр організації мікротрубочок. Кінцеві ділянки хромосом називаються теломерами, що є регуляторами тривалості життя клітини.

26. Власне мітоз поділяється на 4 фази: профазу, метафазу, анафазу і телофазу. Профаза: 2n4c (формування веретена поділу, розходження центріолей до полюсів). Метафаза: 2n4c (вільно розташовані хромосоми по екваторі(метафазна зірка)). Анафаза:4n4c (синхронно починають рухатись до протилежних полюсів, відокремлення двох ідентичних наборів хромосом) .                                                  Телофаза: рання 4n4c, пізня 2п2с (деконденсація і збільшення в об’ємі, поділ клітинного тіла, формування дочірніх ядер);

27. Мейоз – характерно для процесу утворення статевих клітин.

Редукційний ІЕкваційний ІІпрофаза2n4cп2сметафаза2n4cп2санафаза2n4c2п2стелофаза2n4c; п2с2п2с, пс

В результаті утворюється 4 генетично не ідентичних статевих клітини.

28. Смерть клітини – некроз(виникає внаслідок дії фізичних, хімічних і біологічних факторів) і апотоз(запрограмована смерть клітини, яка виникає без первинного ушкодження).  Каріопікноз – каріорексис – каріолізис-лізис

Загальна ембріологія

1. Статеві клітини (гамети) – сперматозоїди та яйцеклітини. Сперматозоїд: довжина – 60 мкм, має головку, шийку та хвіст. Хвіст включає проміжну, основну і термінальну частини. Головка містить ядро і акросому – комплекс Гольджі. Шийка містить проксимальну і дистальну центріоль. Від останньої відходить аксонемний комплекс хвоста. Сперматозоїдам властивий хемотаксис та реотаксис.  Яйцеклітина людини має округлу форму, діаметр близько 130мкм. Гаплоїдний набір хромосом, багата на включення жовтка. У цитоплазмі містяться: ГрЕС, рибосоми, різні види РНК, тубуліни. Запліднення – процес злиття чоловічої та жіночої статевих клітин, у результаті якого виникає одноклітинний зародок з власним координованим і програмованим шляхом розвитку – зигота. У людини запліднення здійснюється в ампельній частині маткової труби. Яйцеклітина потрапляє туди пасивно – завдяки скороченням фімбрій, коливанням війок епітеліоцитів, перистальтичних скорочень м’язової оболонки маткової труби. Сперматозоїди досягають ампульної частини маткової труби завдяки рухомості, хемотаксису та реотаксису.

2. Яйцеклітина людини має округлу форму, діаметр близько 130мкм. Гаплоїдний набір хромосом, багата на включення жовтка. У цитоплазмі містяться: ГрЕС, рибосоми, різні види РНК, тубуліни. Типи яйцеклітин: 1)Первинно оліголецитальна, 2)помірно телолецитальна, 3)різко телолецитальна, 4)вториннооліголецитальна.  1)Невеликих розмірів, містить невелику кількість жовтка, майже рівномірно розподіленого у цитоплазмі. Для таких клітин характерне повне, рівномірне, синхронне дроблення(у ланцетників). 2)Містить помірну кількість жовтку в районі вегетативного полюсу. Дроблення повне, нерівномірне, асинхронне(у амфібій).     3)багато жовтка, дроблення часткове(міробластичне), дискоїдальне(дробиться тільки диск цитоплазми на анімальному полюсі(птахи, рептилії, риби). 4)найбільші за розміром, мало жовтка. Дроблення повне, нерівномірне, асинхронне(ссавці і людина)

3. Яйцеклітина людини – вториннооліголецитальна - найбільша за розміром, мало жовтка. Дроблення повне, нерівномірне, асинхронне. Запліднення внутрішнє. Морула має форму тутової ягоди. Її центральні клітини зв’язані нексусами, через які здійснюється інформаційна взаємодія, вони формують епібласт(ВКМ). Периферійні клітини пов’язані щільними контактами, утворюють бар’єр, який обмежує внутрішнє середовище морули. Вони формують трофобласт(ЗКМ). На 4 добу зародок потрапляє у матку. Там формується бластоциста, що має вигляд пухирця, стінку якого утворюють видовжені клітини трофобласта. Всередині міститься бластоцель, на одному з полюсів якої міститься ембріобласт.

4.Основні етапи ембріогенезу: заплідненя, дроблення, гаструляція, гісто- та органогенез. Гаструляція це складний процес хімічних і морфологічних змін, що супроводжуються розмноженням, ростом, спрямованим переміщенням і диференціацією клітин. Багатоклітинний зародок на цій стадії називається гаструлою. Він починає активно рости і збільшуватись в розмірах. Під час гаструляції утворюються зародкові листки і зачатки органів. Відбувається в 2 фази: ранню і пізню. У ранній фазі відбувається утворення зовнішнього і внутрішнього зародкових листків. Гаструляція здійснюється такими способами: іміграція, інвагінація, епіболія і делямінація.

5.  Гаструляція – це стадія утворення зародкових листків (ектодерми, ентодерми, мезодерми). Перед гаструляцією на 2-му тижні ембріогенезу ембріобласт розділяється на 2 шари: епібласт і гіпобласт. Епібласт і гіпобласт утворюють зародковий диск.Гаструляція в людини відбувається шляхом іміграції. На 14-16-й день ембріогенезу на поверхні епібласта в результаті переміщення клітин утворюється первинна смужка і первинний вузлик.

6. Типи гаструляції:

1) Іміграція – частина бластомерів стінки бластули переміщується, утворючи другий шар.

2) Інвагінація -  вп’ячування стінки всередину бластули.

3)Епіболія – обростання дрібними бластомерами анімального полюса навколо великих бластомерів вегетативного полюса.

4)Делямінація – тангенційне розщеплення поверхневого шару бластомерів на два шари.

7. Мезодерма — один з зародкових листків, які формують ембріон тришарових тварин. Мезодерма формується в процесі гаструляції, завдяки міграції клітин з ектодерми, або внаслідок випинання та відокремлення карманів первинної кишки.Похідна: скелетні м'язи, скелет, шкіра шкіри, сполучної тканини, сечостатевої системи, серця , крові ( лімфатичні клітини), нирок та селезінки.

Мезенхіма - зародкова сполучна тканина більшості багатоклітинних тварин і людини. Мезенхіма виникає за рахунок клітин різних зародкових листків (ектодерми, ентодерми і мезодерми). З мезенхіми утворюються сполучна тканина, кровоносні судини, головні м'язи, вісцеральний скелет, пігментні клітини і нижній шар сполучнотканинної частини шкіри.

8.Зародковий листок, абозародковий шар — набірклітин, що формується протягом ембріогенезу тварин. Найкраще зародкові листки виражені у хребетних, мають в життєвому циклі два або три головних шари тканин.Кожний із зародкових листків дає початок строго визначеним органам та тканинам організму в ході процесу, який називається органогенезом.

Ектодерма є початком тканини, яка покриває поверхні тіла. Вона виникає перший і форми з зовнішнього із зародкових листків. Похідна: центральна нервова система, кришталик ока, черепно-сенсорні, гангліїв і нервів, пігментні клітини, голови сполучної тканини, епідермісу, волосся і молочних залоз.

Ентодерма - один із зародкових листків, що формується в процесі ембріогенезу. Формування ентодерми проходить після впинанні стінки бластули в процесі гаструляції, при формуванні первинної кишки.Похідна: шлунка, товстої кишки, печінки, підшлункової залози, сечового міхура, слизової оболонки уретри, епітеліальні частини трахеї, легенів , глотки, щитовидної залози, паращитовидних залоз і кишечника.

9.Первинний органогенез — процес утворення комплексу осьових органів. У різних групах тварин цей процес характеризується своїми особливостями. Наприклад, у хордових на цьому етапі відбувається закладка нервової трубки, хорди і кишкової трубки.В ході подальшого розвитку формування зародка здійснюється за рахунок процесів зростання, диференціювання і морфогенезу. Зростання забезпечує накопичення клітинної маси зародка. В ході процесу диференціювання виникають різно спеціалізовані клітини, що формують різні тканини і органи. Процес морфогенезу забезпечує придбання зародком специфічної форми.

10. Нейруляція — процес утворення нервової пластинки і її замикання у нервову трубку у процесі зародкового розвитку хордових. Нейруляція: препарат в поперечному перерізі, який показує розвиток від нервової пластинки до нервової борозенки (знизу вгору).

11.  Ранні стадії розвитку людини: 1. Асинхронний тип повного нерівномірного дроблення з утворенням "темних" і "світлих" бластомерів; 2. Інтерстиціальний тип імплантації. 3. Наявність двох фаз гаструляції - делямінаціі та імміграції, між якими бурхливо розвиваються позазародкові органи; 4. Раннє відокремлення і формування внезародишевих органів, 5 . Раннє освіта амніотичного бульбашки без амниотических складок; 6. Сильний розвиток амніону, хоріона і слабке-жовткового мітка і аллантоиса.

ТИПИ яйцеклітин

1. Алецітальная (безжовткова).

2. Оліголецітальная (мало жовткова) в них жовток рівномірно розподіленийпо цитоплазмі, тому їх називають ізолецітальнимі. Серед них розрізняютьпервинноізолецітальние (у ланцетника) і вдруге ізолецітальние (уссавців н особу),

3. Полілецітальние (многожелтковие)

Дроблення залежить від типу яйцеклітини, від кількості жовтка і йогорозподілу. Розрізняють такі типи дроблення:

1. Повне, рівномірний (у первинно ізолецітальних яйцеклітин ланцетника,

Повністю дробиться зигота на рівні частини - бластомери.

2. Повне, нерівномірне (у мезолецітальних яйцеклітин амфібій).

3. Часткове або меробластіческое (у полілецітальних яйцеклітин птахів).

4.Полное, нерівномірне, асинхронне (у вдруге ізолецітальнихяйцеклітин плацентарних ссавців і людини).

У людини після того, як близько трьох днів, зигота утворюється тверда маса клітин шляхом мітотичного ділення, називається морули. Це і зміни до бластоцисти , що складається із зовнішнього шару називається трофобласта і внутрішньої клітинної маси називається ембріобласт .

13. Закладка провізорних органів:

Хоріон – це похідна трофобласта і мезенхіми. Розрізняють ворсинчастий хоріон і гладкий хоріон. Ворсинчастий хоріон входить до складу плаценти.

Жовточний пухирець Аналог жовткового мішка. Його стінка утворена позазародковою ентодермою (клітини гіпобласта) і позазароковою мезодермою. Він з’єднується жовтковою стеблинкою з первинною кишкою. Функції: кровотворення, утворення попередників статевих клітин.

Алантоїс – це невеликий виріст ентодерми в каудальній частині первинної кишки. Функція – він бере участь у формуванні судин плаценти.

14. Четвертий тиждень життя - зародок, який має вигляд тришарового щитка, починає згинатися в поперечному і подовжньому напрямах. Зародковий щиток стає опуклим, а його краї відмежовуються від навколишнього зародок амніону глибокою борозною - туловищной складкою. Тіло зародка з плоского щитка перетворюється в об'ємний, ектодерма покриває тіло зародка з усіх сторін.З ектодерми надалі утворюються нервова система. Дорсальная частина мезодерми, розташована по боках від хорди, утворює парні потовщені виступи - соміт. Соміти сегментуються, тобто діляться на метамерні ділянки.

15. 1) Імплантація – процес вростання зародка у слизову оболонку матки – починається на п’яту  добу ембріогенезу і включає 2 фази – адгезії і інвазії.

Адгезія (прилипання) – це прикріплення бластоцисти до поверхні ендометрію.

Інвазія – це вростання бластоцисти в слизову оболонку матки. Імплантаційна ямка утворюється в результаті впливу ферментів трофобласта.

2) Плацента – це орган, що забезпечує зв’язок між організмом матері і плодом. Тип плаценти в людини – дискоїдальнийгемохоріальний, оскільки ворсинки хоріона омиваються материнською кров’ю. Плацента складається з материнської частини і плодової частини. Материнська частина утворена слизовою оболонкою матки, а плодова ворсинчастим хоріоном.

3) Виділяють три типи плацент у ссавців: дифузна, коли ворсинки розподіляються рівномірно по хоріону (китоподібні, багато копитних), часточкова, коли ворсинки зібрані в групи, розподілені по всій поверхні хоріону (більшість парнокопитні), дискоїдальна, — ворсинки розташовуються на обмеженій, дископодібній ділянці хоріону (комахоїдні, гризуни, мавпи).

16. Критичні періоди розвитку людини: у процесі онтогенезу існують періоди підвищеної чутливості організму до ушкоджу вальної дії чинників зовнішнього середовища (напр. хім. Речовини, іонізуюче випромінювання,  наркотичні засоби, віруси, бактерії, а інш.). Періодами підвищеної чутливості у прогенезі є мейоз, а також процес запліднення. У пренатальному онтогенезі до крит. Періо. Відносять: імплантацію (5-6 доба), планцентацію і розвиток осьових зачатків органів (3-8 тиждень), період розвитку голов. Моз. (15-20й тиждень), період формування основних функціональних систем організму (20-24й тиждень), а також процес пологів.

17. Ембріональна індукція. Ембріональну індукцію можна визначити як явище, при якому в процесі ембріогенезу один зачаток впливає на інший, визначаючи шлях його розвитку, і, крім того, сам піддається індукуючому впливу з боку першого зачатка.

Явище ембріональної індукції. За умов нормального розвитку формування окремих частин зародка й організму в цілому узгоджене за місцем та часом. Це пояснюється тим, що, як правило, зачатки одних органів розвиваються під впливом взаємодій із зачатками інших, які заклалися раніше.

Явище взаємодії між частинами зародка під час ембріогенезу, за якої одна з них визначає напрямок розвитку сусідньої, дістало назву ембріональної індукції (від лат. індукціо - спонукання). Та частина зародка, яка впливає на іншу, називається індуктором, або організатором. Остання згодом сама може виступати в цій ролі стосовно інших частин, які розвиваються пізніше. Отже, розвиток зародка - це ланцюг ембріональних індукційних взаємодій.

  1.  Ткани́на — сукупність клітин, не обов'язково ідентичних, але спільного походження, що разом виконують спільну функцію. Тканинний рівень — це рівень клітинної організації, проміжний відносно клітин та усього організму. Органи утворюються функціональним об'єднанням тканин одного чи кількох видів.

Тканини поділяють на сполучну, епітеліальну, нервову, м’язову.

Заварзін і Хлопін – видатні російські гістологи.  Зробили внесок у розвиток вчення про тканини, зокрема, еволюцію тк. Заварзін у 1934р. запропонував поділити всі тк. за їхніми функціями на загальну та спеціальну. До заг. Тк Заварзін відніс епітелій і ткан внутр. серед, а до спеціальних нервову і м’язову.

2. Детермінація (обмеження, визначення) — виникнення якісної своєрідності між частинами зародка на ранніх стадіях його розвитку.

Диференціація клітин, в біології розвитку, — процес, у якому клітини отримують певний тип або «фенотип». Морфологія клітини та картина експресії генів клітини можуть значно змінитися протягом диференціації, але генетичний матеріал зазвичай залишається без змін (хоча і з цього правила є нечисленні винятки.

Комітування -  обмеження можливостей шляхів розвитку внаслідок детермінації.

Гіпертрофія  — збільшення об’єму і маси органа, клітин під впливом різних факторів.

Атрофі́я  — зменшення розмірів органів або тканин, що супроводжується занепадом їхньої діяльності.

3. Розвиток тканин (гістогенез) відбувається в ембріональному періоді.

Детермінація-це вибір подальшого напрямку розвитку клітин, шляхом блокування компонентів геному.

Диференціація – це поява відмінностей між клітинами, завдяки яким вони можуть виконувати специфічні функції.

Диферон-це сукупність клітин, що послідовно розвиваються з одного виду стовбурових клітин до зрілої спеціалізованої клітини.

Стовбурові клітини, також відомі як штамові клітини — це первинні клітини, що зустрічаються в усіх багатоклітинних організмах. Ці клітини можуть самовідновлюватися шляхом поділу клітини, а також можуть дифференціюватися в досить велику кількість спеціалізованих типів клітин.

4.  Розвиток тканин (гістогенез) відбувається в ембріональному періоді.

Детермінація-це вибір подальшого напрямку розвитку клітин, шляхом блокування компонентів геному.

Диференціація – це поява відмінностей між клітинами, завдяки яким вони можуть виконувати специфічні функції.

Диферон-це сукупність клітин, що послідовно розвиваються з одного виду стовбурових клітин до зрілої спеціалізованої клітини.

До клітинних похідних належать симпласти і синтиції.

Симпласт – неклітинна структура, яка є масою не розділеної на клітини цитоплазми з великою кількістю ядер.

Синтицій – це група клітин, що поєднані в єдине ціле цитоплазматичними містками.

5. Тканина – це система організму, яка склад із клітинта їх похідних, сформувалася у процесі філогенезу і виконує специфічні функції.

Регенерація — це відновлення структурних елементів тканини замість пошкоджених або загиблих.

Фізіологічна регенерація Відбувається протягом усього життя організму і характеризується оновленням клітин слизових, серозних оболонок, внутрішніх органів, різних тканин, залежно від зміни умов їх існування в процесі виконання тих або інших функцій.

Репаративна регенерація Буває у двох формах. У першому випадку некроз, що є наслідком патологічного процесу, поступово заміщується тканиною, ідентичною тій, що загинула, і місце пошкодження зникає безслідно. В інших випадках нормалізація порушених функцій забезпечується за рахунок гіперплазії клітин (та внутрішньоклітинних структур) не в місці пошкодження, а в навколишніх тканинах. Сама ж ділянка некрозу поступово заповнюється сполучною тканиною, яка в подальшому трансформується в рубець. Така форма називається неповною регенерацією, або субституцією.

  1.  Епіт́елій, епітеліальна тканина  — шар клітин, що вистилає поверхню (епідерміс) і порожнини тіла, а також слизисті оболонки внутрішніх органів, харчового тракту, дихальної системи, сечостатеві шляхи. Крім того, утворює більшість залоз організму. Складається з клітин, які щільно розташовані одна біля одної, міжклітинної речовини мало.

Морфофункціональна класифікація: у її основі особливості будови і функції різних видів епітелію.

Епітелій: Залозистий, Покривний(одношаровий і багато шаровий).

  1.  Епіт́елій, епітеліальна тканина . Філогенетична класифікація ґрунтується на походженні різних видів епітелію з різни зародкових листків. Згідно з філогенетичною класифікацією, запропонованою М.Г. Хлопіним, розрізняють шкірний(з ектодерми), кишковий(ендодерми), нирковий(мезодерми), целомічний(мезодерми), епендимогліальний(із нерв трубки) та ангіодермальний(з мезенхіми) епітелії.

  1.  Морфологічна класифікація покривного епітелію залежить від кількості шарів та форми клітин. Тому, перш за все, епітелій поділяють на одно- та багатошаровий.

В одношаровому епітелії всі клітини розташовані на базальній мембрані. У багатошаровому на базальній мембрані лежить лише нижній базальний шар епітеліоцитів, а клітини, що розташовані вище, втрачають контакт із нею. Одношаровий епітелій поділяють на однорядний та багаторядний, а однорядний, в свою чергу, за формою клітин буває плоским, кубічним, призматичним. В однорядному епітелії всі клітини мають однакову форму і розмір, а їх ядра розташовуються на одному рівні. У багаторядному епітелії внаслідок різних видів, розмірів і форм клітин їх ядра лежать на різних рівнях, але всі епітеліоцити контактують з базальною мембраною.

Багатошаровий епітелій поділяється на плоский незроговілий, плоский зроговілий та перехідний. Такий поділ залежить від особливостей будови верхнього шару епітеліоцитів.

  1.  Одношарові епітелії – тканини, в яких усі клітиниконтактують з базальною мембраною. Однорядними називають епітелії, до складу якихвходять клітини однакової форми. Аналогічність будовиклітин обумовлює розташування ядер на однаковійвідстані від базальної мембрани, тобто, в один ряд.Враховучи відношення висоти клітин до їх товщини,розрізняють:

•плоский (просіт кровоносних і лімфатичних судин, камери серця)

•кубічний(в канальцях нирки, вивізних протоках багатьох залоз, бронхіолах легень)

•циліндричний(шлунок, товста кишка, жовчний міхур, вивідні протоки печінки та підшлункової залози порожнина матки та яйцеводів).

  1.  Одношарові епітелії – тканини, в яких усі клітини контактують з базальною мембраною.

Одношаровий багаторядний миготливий епітелій. Його клітини мають різну форму і висоту; відповідно їх ядра розташовані на різних рівнях, утворюючи кілька рядів. На клітинах є миготливі війки. В цьому епітелії виділяють 3 типи клітин: миготливі, короткі і довгі вставні. Вставні клітини лежать на базальній пластинці своєю широкою частиною, а миготливі - вузькою. Вставні клітини до поверхні епітелію не доходять. Зустрічають і бокалоподібні клітини, які виділяють слиз, що утворює слиз на поверхні епітелію. Цей епітелій вистилає повітроносні шляхи і має ендодермальне походження.

6. Багатошаровий плоский зроговілий епітелій - епідерміс, він вистилає шкірні покриви. У товстій шкірі (долонні поверхні), яка постійно відчуває навантаження, епідерміс містить 5 шарів:

1 - базальний шар - містить стовбурові клітини, диференційовані циліндричні і пігментні клітини (пігментоціти).

2 - шипуватий шар - клітини полігональної форми, в них містяться тонофібрили.

3 - зернистий шар - клітини набувають ромбоподібну форму, тонофібрили розпадаються і всередині цих клітин у вигляді зерен утворюються білок кератогиалин, з цього починається процес зроговіння.

4 - блискучий шар - вузький шар, в ньому клітини стають плоскими, вони поступово втрачають внутрішньоклітинну структуру, і кератогиалин перетворюється на елеідін.

5 - роговий шар - містить рогові лусочки, які повністю втратили будова клітин, містять білок кератин. При механічному навантаженні і при погіршенні кровопостачання процес зроговіння посилюється.

У тонкій шкірі, яка не відчуває навантаження, відсутня зернистий і блискучий шар.

7. Багатошаровий плоский не зроговілий епітелій – рогівка ока, ротова порожнина, стравохід, піхва, анальна частина прямої кишки.

Має 3 шари:

-базальний –клітини циліндричної форми, лежать одним рядом.

-остистий –клітини полігональної форми з відростками.

-шар плоских клітин –поверхневий  шар клітин, що відмирають і злущуються.      

8. Залози – похідні залозистого епітелію. Клітини – гландулоцити.  Залози поділяються на дві великі групи: екзокринні та ендокринні., відповідно гландулоцити – на екзокриноцити та ендокриноцити. Екзокринні залози мають два відділи: секреторний та вивідну протоку, а їхні секрети виділяються на поверхню епітеліального пласта. Ендокринні залози не мають вивідних проток, тому їхні продукти – гормони –виділяються у кров і лімфу.

Залози класифікуються за будовою, типом секреції, а також характером секрету.

За локалізацією стосовно епітеліального пласту –ендоепітеліальні (келихоподібні  клітини(екзокриноцити) та екзоепітеліальні( розташовані у сполучній тканині).    

Екзоепітеліальні екзокринні залози за кількістю вивідних проток поділяються на прості (1 вивідна протока) та складні (вивідна протока розгалужується). Прості залози бувають розгалужені (кілька кінцевих відділів) та нерозгалужені (1 кінцевий відділ). Складні залози завжди розгалужені.

За формою секреторних відділів залози бувають альвеолярні, трубчасті та трубчасто-альвеолярні.

За типом секреції: мерокринні (секрет виділяється без порушення цілісності клітини), апокринові (руйнування верхівки клітини) та голокринові (повне руйнування клітини).

За хімічним складом секрету: білкові, слизові, мішані (білково-слизові), сальні та потові.

9. Процес секреції має 4 фази:

1.Поглинання вихідних продуктів гландулоцитами із крові та лімфи з боку базальної  поверхні.

2.Синтез  і нагромадження секрету, що здійснюється у гранулярній або гладкій ЕПС; секторні продукти оформляються у складі комплексу Гольджі.

3.Виділення секрету з гландулоцитів – екструзія, що здійснюється різними шляхами в залежності від типів секреції  (типи залозистої секреції дивиться вище).

4.Відновлення вихідного стану залозистої клітини.  

Кров

  1.  Геморама –кількіне співвідношення форменних елементів крові:

Гематокрит (загальний аналіз крові)

Кількість еритроцитів ( у чоловіків 3,9-6,0*1012 , у жінок 3,7-5,5*1012  на 1 л крові.)

Кількість лейкоцитів 4,0-10*109 на 1 л

Кількість тромбоцитів 180-320*109  на 1 л

Швидкість осідання еритроцитів 6-12 мм/год

Гемоглобін Нв (у дорослих) 130-160 г/л, Нв (у новонароджених) 140-180 г/л

Кількість ретикулоцитів 2-9*1012 на 1 л.

 Гемограмам має діагностичне значення, характеризує вік крові, є показником ефективності заходів.

  1.  Кров – це рідка тканина організму, що циркулює в системі замкнених трубок –судин. Кров становить 5-9% від маси тіла людини. Кров складається з плазми (55-60%) та форменних елементів (40-45%).   

Функції крові:

1.Захисна –гуморальний і клітинний імунітет.

2.Дихальна –перенесення кисню і вуглекислого газу.

3.Трофічна –перенесення поживних речовин.

4.Екскреторна – виведення шлаків.

5.Гуморальна –транспорт гормонів та інших біологічно-активних речовин.

6.Гомеостатичнам – підтримання гомеостазу.

  1.  Плазма крові –колоїдний розчин, в’язкість якого у 5 разів перевищує в’язкість води. Плазма містить 90-93% води та 7-10% сухого залишку. В останньому близько 7% становлять білки, а 3%  - інші органічні та мінеральні речовини. До білків плазми належать:

1.альбуміни(4%) – зв’язують і переносять з кровю цілу низку речовин.

2.глобуліни(1,1-3,1%) –поділяються на альфа-, бета- і гаммаглобуліни (імуноглобуліни, які містять антитіла).

3.фібриноген(0,2-0,4%) –здатний перетворюватися на нерозчинну форму –фібрин –здійснює процес згортання крові.

  1.  Лейкоцитарна формула:

1.Юні нейтрофіли – 0,5 -1%

2.Паличкоядерні нейтрофіли – 1-6%

3.Сегментоядерні нейтрофіли – 42-72%

4.Еозинофіли – 0,5-5%

5.Базофіли – 0 -1%

6.Лімоцити – 20 -40%  

7.Моноцити – 3 -11%

Співвідношення лейкоцитів у крові має певне діагностичне значення. Наприклад, зростання кількості юних і паличкоподібних нейтрофілів у поєднанні з лейкоцитозом свідчить про наявність вогнища запалення.  

  1.  Еритроцити –нерухомі високо диференційовані клітини, які не мають ядра та всіх цитоплазматичних органел. Загальна кількість еритроцитів у крові 25*1012   .Розрізняють дискоцити 80% (форма двоввігнутого диска) , планоцити (мають плоску поверхню),  сфероцити (кулясті), ехіноцити (мають шипи) тощо. Еритроцити складаються з води 60% та сухої речовини 40%. 95% сухої речовини складає гемоглобін. Еритроцити всередині мають заглибину – фізіологічну екскавацію. Єдина функція – дихальна.
  2.  Тромбоцити  або кров’яні пластинки –це фрагменти цитоплазми гігантських клітин кісткового мозку –мегакаріоцитів. Кількість тромбоцитів 180-320*109 на 1 л крові. Кожен тромбоцит складається з гіаломера (основи) та грануломера, який має вигляд зерняток у центрі пластинки. Функція тромбоцитів – участь у процесах зсідання крові. Тромбопластин, який містять тромбоцити, перетворює фібриноген на фібрин.
  3.  Лейкоцити –це клітини крові, які містять ядро та всі цитоплазматичні органели, не мають пігменту, здатні до виходу із судин та активного пересування шляхом утворення псевдоподій. В 1 л крові міститься  4,0-10*109  лейкоцитів. Усі лейкоцити в залежності від наявності зернистості поділяються на гранулоцити (нейтрофіли, еозинофіли та базофіли) й агранулоцити (лімфоцити та моноцити).  Виконують захисну фінкцію.
  4.  Кількість лейкоцитів під час народження дитини більша і сягає 10-30*109 в 1 л. Відрізняється від дорослих і дитяча лейкоцитарна формула, яка змінюється протягом перших 14-15 років життя. Ці зміни стосуються співвідношення нейтрофілів та лімфоцитів. Під час народження дитини відсотковий вміст нейтрофілів більший ніж лімфоцитів (64% : 24% як і у дорослих), на 4-5 добу постнатального періоду їх кількість вирівнюється (45% : 45%).  Протягом 1-2 року постнатального періоду стабілізується дитяча лейкоцитарна формула (65% лімфоцитів і 25% нейтрофілів). На 4-5 році життя кількість лімфоцитів та нейтрофілів знову вирівнюється  (45% : 45%). До 14-15 років нейтрофілів стає більше (60%), а лімфоцитів менше (28%).  

Перехрест кривої відсоткового вмісту лімфоцитів та лейкоцитів на 4-5 добу та на 4-5 році життя називається періодами першого і другого фізіологічних перехресть.

  1.  Нейтрофільні гранулоцити –становлять 65-70% від загальної кількості лейкоцитів. Мають дрібну зернистість. Гранули нейтрофілів поділяються на первинні та вторинні. Первинні – це лізосоми.  Вторинні – специфічна зернистість.  За формою ядра поділяються на юні (0-1%), паличкоядерні (1-6%) та сегментоядерні (42-72%).  Функція: мають здатність активно рухатись, пересуватись у тканинах до вогнища запалення і фагоциту вати мікроорганізми та інші дрібні частинки.

   10. Лейкоцити крові. Базофільні та еозинофільні гранулоцити (замалювати схематично). Процентний вміст. Особливоті будови та функції.

  Еозинофільні гранулоцити  –  0.5 -5%  від заг. к-ті. Зернистість велика(0.7-1.5 мкм). Містять кристалоїдні структури пластинчастої будови. Гранули містять гідролазу, пероксидазу і гістамін. Вони рухомі і здатні до фагоцитозу, але менше ніж нейтрофіли.

  Беруть участь у анафілактичних, алергічних реакціях і на сторонній білок. Їх    к-ть зростає при алергії, гельмінтозі, інфекціях.

   Базофільні гранулоцити – 0-1% від заг.к-ті лейкоцитів крові. Розмір гранул 0.5-1.2 мкм. Гранули містять гістамін, серотонін, пероксидазу, кислу фосфатазу. Фермент синтезу гістаміну – гістидиндекарбоксилаза. Ядро не має постійної форми. Базофіли малорухомі к-ни, майже не здатні до фагоцитозу. Ф-ція: метаболізм гістаміну та гепарину.

Гепарин – антикоагулянт, бо бере участь у згортанні крові, зумовлює появу набряків, розширення судин.

   11.  Лейкоцити крові. Моноцити(замалювати схематично). Процентний вміст. Особливоті будови та функції. Поняття про макрофагічну систему.

Моноцити – становлять 3-11% від заг.к-ті лейкоцитів. В цитоплазмі є численні органели, багато лізосом. Ядро бобоподібне, чи у формі вісімки. Рухомі, здатні до фагоцитозу, піноцитозу. Живуть від 36 – 104 годин, виходять у тканини і перетворюються на макрофаги-гістоцити.

   12.  Лейкоцити крові. Лімфоцити. Їх будова, гістохімічна характеристика та участь в імунних реакціях. Процентний вміст. Замалювати схематично малий лімфоцит.

  Лімфоцити – у крові дорослих 19-38% від  заг. к-ті лейкоцитів. Лімфоцити за розміромє:

- малі(4.5 – 7 мкм) становлять  2\3 від заг. к-ті (мають велике ядро, що заповнює майже всю клітину);

-середні(7-10 мкм) становлять  1\3 від заг. к-ті;

-великі(10 і більше) в лімфі грудної протоки.

Середні і великі мають ніжну хроматинову структуру, велику к-ть цитоплазми .

Лімфоцити-  клітини імунної системи, які є різновидом лейкоцитів, і які відповідають за набутий імунітет.

13. Характеристика імунокомпетентних клітин. Т і В- лімфоцити. Особливості їх розвитку.

Лімфоцити розділяють на B-клітини, T-клітини та НК-клітини.

  •  В-Лімфоцити розпізнають чужорідні структури (антигени) і виробляють при цьому специфічні антитіла (білкові молекули, спрямовані проти чужорідних структур).
  •  Т-Лімфоцити виконують функцію регуляції імунітету. Т-тіла стимулюють виробку антитіл, а Т-супресори гальмують ії.
  •  К-Лімфоцити можуть руйнувати чужорідні структури, помічені антитілами. Під дією цих клітин можуть бути зруйновані різні бактерії, ракові клітини, клітини інфіковані вірусами.
  •  NK-Лімфоцити здійснюють контроль за якістю клітин організму. При цьому NK-Лімфоцити можуть руйнувати клітини, які за своїми властивостями відрізняються від нормальних клітин, наприклад, ракові клітини.

В нормі лімфоцити складають від 18% до 42% загальної кількості лейкоцитів крові.

Всі лімфоцити розвиваються із спільних клітини-попередників лімфоїдного ряду, що в свою чергу утворюються із гемопоетичних стовбурових клітин у кістковому мозку. Відповідно, у кістковому мозку наявні всі проміжні стадії розвитку В-лімфоцитів, і частина — Т-лімфоцитів. Решта незрілих Т-клітин була виділена із тимуса, де вони завершують свій розвиток. Проте, проміжні стадії дозрівання NK-клітин не були знайдені ні в кістковому мозку, ні в тимусі.

                                   Сполучні тканини

1.Тканини внутрішнього середовища. Походження. Загальний принцип будови(схема) та функції.

Тканини внутрішнього середовища. Загальна характеристика Тканини внутрішнього середовища - це велика група тканин, які разом з епітелієм належать до так званих загальних тканин. Тканинами внутрішнього середовища є кров, лімфа і сполучна тканина з усіма її різновидами. Підстава для поєднання їх у єдиний тканинний тип: спільність походження, будови і функції. 

Спільність походження цих тканин є найвагомішою ознакою і полягає у тому, що всі вони розвиваються з мезенхіми. Мезенхіма - найпримітивніша сполучна тканина, яка існує лише на ранніх стадіях ембріонального розвитку. За будовою мезенхіма нагадує сітку, тому що клітини її мають зірчасту або веретеноподібну форму і контактують одна з одною своїми відростками. У петлях сітчастого остова міститься драглиста маса - міжклітинна речовина, щільність якої коливається зі змінами обміну речовин. Із мезенхіми шляхом диференціації розвиваються кров, лімфа і всі види сполучної тканини. Спільність будови цих тканин полягає у наявності міжклітинної речовини, яка у кількісному відношенні переважає над клітинами. На основі будови міжклітинної речовини можна виділити основні типи тканин внутрішнього середовища: кров та лімфа; власне сполучна тканина; хрящова тканина; кісткова тканина. 

Функції тканин внутрішнього середовища різноманітні, але їх звичайно поєднують під загальною назвою "опорно-трофічні тканини". Вони виконують такі функції: трофічну, захисну, опорну (механічну).

2.Волокнисті солучні тканини. Класифікація(схематично).

   Волокнисті солучні тканини поділяються на пухку і щільну.

Пухка волокниста сполучна тканина Серед різновидів сполучної тканини рихлій сполучній тканині належить важливе місце в життєдіяльності організму. Вона є у складі майже всіх органів - заповнює проміжки між ними, утворює їх оболонки та прошарки в органах. Крім опорно-механічної функції, рихла сполучна тканина виконує захисну і трофічну функції, а також бере участь у пластичних процесах при загоюванні ран, утворенні капсули навколо стороннього тіла тощо.                                                                                                                        Щільні сполучні тканини містять менше основної речовини, а в міжклітинній речовині переважають волокнисті структури. У них мало клітин і менш різноманітний клітинний склад. Волокна переважно колагенові, щільно розташовуються один до одного. У щільної неоформленої сполучної тканини колагенові волокна утворюють пучки, між волокнами є фібробласти, але переважають фіброціти. Пучки колагенових волокон переплітаються між собою, а між пучками лежать тонкі прошарки пухкої сполучної тканини з капілярами. Ця тканина утворює сітчастий шар шкіри. Здатність регенерації нижче, ніж у рихлою. 3.4. Пухка волокниста сполучна тканина(схема). Вказати елементи будови і функції.

      Пухка волокниста сполучна тканина складається з клітин та безладно розміщених в основній речовині волокон. Вона переважно знаходиться вздовж кровоносних судин. Її різновидом є ретикулярна сполучна тканина.

  Серед різновидів сполучної тканини рихлій сполучній тканині належить важливе місце в життєдіяльності організму. Вона є у складі майже всіх органів - заповнює проміжки між ними, утворює їх оболонки та прошарки в органах. Крім опорно-механічної функції, рихла сполучна тканина виконує захисну і трофічну функції, а також бере участь у пластичних процесах при загоюванні ран, утворенні капсули навколо стороннього тіла тощо.         

  Серед клітин переважають фібробласти - великі клітини з великим, овальним, слабобазофільним ядром. Частина фібробластів є стовбуровими клітинами, які здатні пролеферіровать і диференціюватися. За рахунок них йде швидка регенерація сполучної тканини. Чим більше фібробластів, тим краще йде регенерація. З віком фібробласти перетворюються на фіброціти - дрібні, веретеновидной форми клітини, які втрачають здатність до поділу і вироблення міжклітинної речовини.        

Макрофаги - розвиваються з моноцитів крові. Мають округле або овальне базофильное ядро, клітини мають чіткі контури, містить добре розвинений лізосомний апарат, цитоплазма утворює короткі відростки, клітини мають фагоцитарної функцією, беруть участь в імунних реакціях.У пухкої сполучної тканини по ходу кровоносних судин, особливо близько капілярів розташовуються тканинні базофіли (огрядні клітини). Ці клітини утворюються з базофілів крові. Вони мають округлу форму, в цитоплазмі багато базофільних гранул, які виводяться з клітини в навколишнє середовище. Ці гранули містятьбіологічно активні речовини - гепарин і гістамін. Гепарин знижує згортання крові, а гістамін збільшує проникність капіляра і основної речовини. Плазматичні клітини - дрібні клітини округлої або овальної форми, мають округле, ексцентричне, різко базофильное ядро ​​і базофільну цитоплазму, в якій сильно розвинений белоксинтезирующий апарат (канальці гранулярной ЕРС). Ці клітини виробляють і виділяють імуноглобуліни, беруть участь в гуморальній імунній відповіді, утворюються з В-лімфоцитів крові.   

5.Міжклітинна речовина сполучної тканини (волокна, основна речевина), будова, значення.  

Міжклітинна речовина, або позаклітинний матрикс (substantia intercellularis), сполучної тканини складається з колагенових і еластичних волокон, а також з основної (аморфної) речовини. Міжклітинна речовина як у зародків, так і у дорослих утворюється, з одного боку, шляхом секреції сполучнотканинними клітинами, а з іншого – з плазми крові, що надходить в міжклітинні простори.У ембріогенезі людини утворення міжклітинної речовини відбувається починаючи з 1-2-го місяця внутрішньоутробного розвитку. Протягом життя міжклітинна речовина постійно оновлюється – резорбується і відновлюється. Міжклітинна речовина сполучної тканини складається з волокон і аморфної речовини. Волокна позаклітинного матриксуВолокна бувають трьох типів: а) Колагенові волокнаб) Еластичні волокна

в) Ретикулярні волокна    

6. Пухка волокниста сполучна тканина. Морфофункціональна характеристика. Клітини фібробластичрого ряду(записати диферон).

 Фібробласти - це клітини-продуценти міжклітинної речовини. Саме вони синтезують як волокнисті структури, так і основні компоненти аморфної речовини. У певному розумінні фібробласти будують сполучну тканину. За їхньою властивістю утворювати основні опорні структури організму фібробласти часто називають механоцитами. Про здатність створювати волокна свідчить їхня назва ("фібра" - волокно та "бластос" - зачаток). Діяльністю цих клітин зумовлене загоювання ран, розвиток рубця, утворення капсули навколо стороннього тіла тощо. До фібробластів належить численна група клітин, різних за ступенем диференціації, які утворюють так званий фібробластичний ряд (або диферон): стовбурові клітини - напівстовбурові клітини-попередники - малоспеціалізовані фібробласти - зрілі фібробласти - фіброцити. Крім того, до цього ж ряду належать міофібробласти. 

 Малоспеціалізовані, або юні, фібробласти округлої або веретеноподібної форми з базофільною цитоплазмою містять велику кількість вільних рибосом. Інші органели (ендоплазматична сітка, мітохондрії, комплекс Гольджі) розвинені слабо.   Зрілі фібробласти - великі клітини з відростками. Ядро цих клітин велике, овальне, світле, містить дрібнорозпилений рівномірно розподілений хроматин, на тлі якого добре видно 1-2 великих ядерця.Цитоплазма фібробласта містить усі загальні органели.       

Фіброцити - це дефінітивні (кінцеві) форми розвитку фібробластів. Форма їх веретеноподібна, вони можуть мати крилоподібні відростки. Містять невелику кількість органел. Синтетичні процеси в них різко знижені. Міофібробласти - це вид клітин, у які можуть перетворюватися фібробласти. Вони функціонально подібні до гладких м'язових клітин, але, на відміну від останніх, мають добре розвинену ендоплазматичну сітку. Такі клітини можна спостерігати у матці під час вагітності, а також у грануляційній тканині (під час загоювання ран).      

7.Утворення волокон міжклітинної речовини (схематично на прикладі синтезу колагену). Синтез відбувається в фібробластах. Механізм цього процесу такий: на рибосомах фібробластів синтезуються поліпептидні ланцюги, що володіють унікальною первинною структурою. Потім ці поліпептидні ланцюги збираються у потрійну суперспіраль. Далі молекулу  колагену  клітина секретує в позаклітинний простір. У ньому і відбувається специфічний процес - самосборка молекул  колагену . Вона супроводжується утворенням складної надмолекулярної структури. Ця структура складається з волокон, а також пучків волокон: вони переплітаються в самих різних напрямках, утворюючи, таким чином, сполучну тканину - це і є шкірний покрив.

8.Назвати та схематично замалювати клітину пухкої спулучної тканини, продуцента міжклітинної речовини.

Сполучна

9. Макрофагоцити -розміри клітинного тіла (10-15 мкм), яке добре відмежоване від основної речовини. Форма різна: кругла, витягнута або неправильна. Ядро також має менші розміри, не таку?? Правильну форму, як в фібробласта, містить більше гетерохроматину, виглядає щільним, фарбується досить інтенсивно. Цитоплазма макрофагів базофільні, неоднорідна, плямиста, містить багато лізосом, фагосом, піноцитозних бульбашок. Інші органели (мітохондрії, гранулярна ендоплазматична мережа, комплекс Гольджі) розвинені помірно. Плазмолемме макрофагів утворює глибокі складки і довгі мікроворсинки, за допомогою яких ці клітини захоплюють сторонні частинки. На поверхні плазмолеми макрофага містяться рецептори для пухлинних клітин, еритроцитів, Т-і В-лімфоцитів, антигенів, імуноглобулінів. Наявність рецепторів до імуноглобулінів забезпечує їхню участь в імунних реакціях. Макрофаги відіграють важливу роль як у природному, так і в придбаному імунітет організму. Участь макрофагів у природному імунітеті виявляється в їх здатності до фагоцитозу і в синтезі ряду активних речовин - фагоцітіну, лізоциму, інтерферону, пірогени, компонентів системи комплементу т.д., які є основними факторами природного імунітету; їх роль в придбаному імунітет полягає в передачі антигену імунокомпетентних клітин (лімфоцитів) після його перетворення з корпускулярної форми в молекулярну (участь в кооперативній тріклітінній системі імунної відповіді разом з T-і В-лімфоцитами). Крім того, макрофаги продукують медіатори-монокіни, що сприяють специфічної реакції на антигени та цитолитические фактори, вибірково руйнують пухлинні клітини. Відбуваються макрофаги з промоноцітов червоного кісткового мозку, тобто зі стовбурових гемопоетичних клітин, і завершують собою моноцитарний Гістогенетичний ряд. Разом з іншими клітинами того ж походження вони утворюють так звану макрофагічну систему організму. До макрофагічноі системи належить сукупність усіх клітин, які здатні захоплювати з тканинної рідини організму сторонні частинки, загиблі клітини і неклітинні структури, бактеріітощо. Фагоцитованих матеріал всередині клітини піддається ферментативному розщепленню в лізосомної апараті. Таким чином ліквідуються шкідливі для організму агенти, які виникають місцево чи потрапляють ззовні.

10. Форма тканинних базофілів різноманітна, так само як і розміри. Вони бувають круглі, овальні, з широкими відростками. Розміри коливаються від 10-20 до 35 і навіть до 100 мкм. Ядра порівняно невеликі, круглі, звичайної будови. В цитоплазмі міститься велика кількість мітохондрій, небагато елементів гранулярної, а також агранулярного ендоплазматичної мережі, комплекс Гольджі розвинений добре. Головна особливість цих клітин - наявність великої кількості характерних гранул розмірами 0,2-0,8 мкм, кожна з яких оточена мембраною. За електронно будовою гранули тканинних базофілів людини кристалоїдні або пластинчасті (спостерігаються видові відмінності структури гранул). Гранули містять кілька речовин, які мають велике фізіологічне значення. Першою з таких речовин є гепарин, який складає 30% вмісту гранул і, головним чином, зумовлює їх базофілія і метахромазію. Друга речовина - гістамін, який складає 10% їхнього вмісту. Матрикс гранули складається з білка (хімаз тканинних базофілів) та гепарину, які формують стабільну сітку; до неї іонними зв'язками приєднаний гістамін. Гранули також містять хондроітінсульфат, гіалуронову кислоту, у деяких тварин (але не в людини) виявлено і серотонін. Тканинні базофіли часто локалізуються уздовж кровоносних судин мікроциркуляторного русла, утворюючи периваскулярні піхви. Велика кількість цих клітин зустрічається у стінці органів травного каналу, в матці, молочній залозі, тимусі, мигдаликах.

11. Плазматичні клітини (плазмоцити) мають розміри 7-10 мкм, хоча можуть бути дещо більше. Форма їх округла або багатокутна, якщо вони стикаються. Ядро невелике, кругле, розташоване ексцентрично, містить переважно конденсований хроматин, грудочки якого утворюють характерний для плазмоцити малюнок - колеса зі спицями або цифри на циферблаті годинника. Цитоплазма інтенсивно базофільні, на тлі якої у ядра добре видно "світле двір", або перинуклеарний зону зі слабким фарбуванням. Ультраструктура цих клітин характеризується наявністю в цитоплазмі добре розвиненої гранулярної ендоплазматичної мережі, розташованої концентрично і займає більшу частину клітини. Велика кількість рибосом (РНК) призводить базофілія цитоплазми. В області «світлого двір" локалізовані центріолі, оточені цистернами комплексу Гольджі. У цистернах гранулярної ендоплазматичної мережі плазмоцитів відбувається синтез імуноглобулінів (антитіл). Частина вуглеводного компонента імуноглобулінів синтезується в комплексі Гольджі. Це органели, яка досить добре розвинена в плазмоцитах, відповідає також за секрецію синтезованих імуноглобулінів за межі клітини, далі вони потрапляють через лімфу в кров.

Таким чином, плазмоцити забезпечують гуморальний імунітет, тобто вироблення специфічних білків-імуноглобулінів (антитіл), реагуючи на проникнення в організм антигену, який буде знешкоджуватися антитілами. Відбуваються плазматичні клітини зі стовбурної кровотворної клітини (через стадію В-лімфоцитів).

12. Для сполучних тканин цієї групи характерно переважний розвиток того чи іншого виду клітинних елементів, а також деякі особливості міжклітинної речовини. Ретикулярна тканина (textusreticularis) утворює соединительнотканную строму кровотворних органів, формуючи мікрооточення для клітин крові, які дозрівають. Основу ретикулярної тканини складають ретикулярні клітини і ретикулярні волокна. Ретикулярні клітини мають відростки, якими вони контактують один з одним, утворюючи сітку. Сітка доповнюється ретикулярними волокнами, які тісно пов'язані з клітинами. Серед ретикулярних клітин розрізняють фібробластоподібних клітини, фагоцити моноцитарного генезис і малодиференційовані клітини.

13. Для сполучних тканин цієї групи характерно переважний розвиток того чи іншого виду клітинних елементів, а також деякі особливості міжклітинної речовини. Характерною особливістю жирової тканини є переважання жирових клітин - адипоцитів. Розрізняють два види жирової тканини - білу і буру. Біла жирова тканина побудована з описаних на початку цієї глави однопухірчастіх адипоцитів, які в цитоплазмі містять одну велику краплю жиру. Жирові клітини утворюють часточки різних розмірів і форми. Між ними розміщені вузькі прошарки пухкої сполучної тканини, в якій виявляються фібробласти, тканинні базофіли, лімфоцити, тонкі колагенові волокна. Тут також локалізовані кровоносні і лімфатичні капіляри, які охоплюють своїми петлями жирові часточки. Біла жирова тканина відіграє роль депо високоенергетичного поживного матеріалу, яким для організму є нейтральні жири. Вона також бере участь в обміні води, виконує амортизаційні функції, захищаючи життєво важливі органи від механічних пошкоджень. Білий жир у людини знаходиться переважно в ділянці передньої черевної стінки, на стегнах, на ділянках сідниць, в очеревині, підшкірній жировій клітковині. Під час голодування підшкірна, приниркова жирова тканина, а також сальник швидко втрачають запаси жиру. На відміну від цього, жирова тканина долонь і підошов, очної ямки навіть при тривалій голодування майже не втрачає ліпідів, оскільки в таких ділянках його основною функцією є механічна, а не метаболічна.

14. Для сполучних тканин цієї групи характерно переважний розвиток того чи іншого виду клітинних елементів, а також деякі особливості міжклітинної речовини. Бура жирова тканина складається з адипоцитів, що містять в цитоплазмі велику кількість дрібних жирових включень у формі пухирців. Ядро в цих клітинах займає центральне положення, в цитоплазмі міститься значна кількість мітохондрій, цитохроми яких зумовлюють бурий колір тканини. Багатопухірчасті адипоцити мають високу окислювальну здатність, в результаті їхнього метаболізму вивільняється тепло, яке зігріває кров у численних капілярах між клітинами. Таким чином, основна функція цієї тканини терморегуляторна. Вважають, що бурий жиру людини є тільки в дитячому віці; частіше він локалізований в межлопаточной області, на шиї, під пахвами, в околопочечной клітковині. Запаси його у немовлят становлять близько ЗО р. Проте існують дані, що в паранефральній жирових депо, які є основним місцем локалізації цієї тканини у людини, знайдені бурий жир в осіб віком до 50 років.

15. Щільна волокниста сполучна тканина (textus connectivus fibrosus compactus) Для цього виду сполучної тканини характерно переважання волокнистих структур і насамперед колагенових волокон. Ця особливість забезпечує високі амортизаційні-механічні властивості. Залежно від способу орієнтації колагенових волокон у просторі розрізняють оформлені і неоформлені щільну волокнисту сполучну тканину. Оформлена щільна волокниста сполучна тканина локалізується у складі фіброзних мембран, зв'язок, сухожиль. Останні, з'єднуючи м'язи з кістками, присутні вектора сили переважно в одному напрямку. Зазначений чинник обумовлює паралельну орієнтацію пучків колагенових волокон в просторі. Між окремими пучками волокон розміщені високодиференційовані клітини фібробластичного ряду (фіброціти), які своєю синтетичною активністю забезпечують фізіологічну регенерацію сухожильних пучків. Пучок колагенових волокон, оточений шаром фиброцитов, називається сухожильним пучком першого порядку. Фіброціти розмежовують сусідні сухожильні пучки першого порядку і на поздовжньому розрізі сухожилля мають вигляд рисочок. Характерним є чергування пучків колагенових волокон і рядів фиброцитов.

На поперечному розрізі сухожилля можна побачити характерні пластинчасті відростки фиброцитов, що виникають внаслідок стиснення клітинного тіла прилеглими колагеновими волокнами. Кілька сухожильних пучків першого порядку утворюють сухожильні пучки другого порядку, останні розділені прошарками пухкої сполучної тканини, які називаються ендотендінію. У складі великих сухожиль пучки другого порядку, об'єднуючись, утворюють сухожильні пучки третього і навіть четвертого порядків. Зовні сухожилля оточений перитендиний, утвореним пухкої сполучною тканиною.

16.Прикладом неоформленої щільної волокнистої сполучної тканини може служити сітчастий шар дерми. У його складі товсті пучки колагенових волокон орієнтовані в різних напрямках, що забезпечує міцність шкіри при найрізноманітніших напрямків дії механічних факторів. Між пучками колагенових волокон лежать фібробласти і макрофаги, судинно-нервові пучки і основна міжклітинна речовина.

Скелетна

1. Характерна особливість хрящової тканини - високий (до 75%) вміст води, яка, зв'язуючись із гігантськими молекулами протеогліканів, забезпечує пружно-еластичні властивості хряща. Близько 15% хрящової тканини складають органічні речовини, 8% - неорганічні солі. Це єдиний вид сполучної тканини, в якому відсутні судини. Живильні речовини всередину хряща потрапляють шляхом дифузії з перихондрит - охрястя. Клітинними елементами є хондробласти і хондроцити. У міжклітинній речовині розміщені хондрінові волокна, побудовані з колагену II типу або еластину. В залежності від будови міжклітинної речовини розрізняють 3 види хрящової тканини - гіалінових, еластичну і волокнисту. Основні функції всіх видів хряща - опорна, формотвірна.

2 Джерелом утворення хрящової тканини в онтогенезі є мезенхима - зачатковий сполучна тканина. В процесі хондрогістогенезу частина клітин мезенхіми втрачає свої відростки, округлюється та утворює хрящовий зачаток - хондрогенній острівець. Мезенхімних клітин в його складі диференціюються в хондробласти. На наступній стадії утворення первинної хрящової тканини, з перетворенням хондробласти в хондроцити першого типу, посилюється синтез колагену, виникають колагенові волокна, в результаті чого міжклітинна речовина набуває ознак оксифилен. Дозрівання хондроцитів, їх перетворення з клітин першого типу в клітини другого типу призводить до посилення синтезу протеогліканів і, відповідно, до зростання базофілія міжклітинної речовини. Існує два способи зростання хряща - внутрішній (інтерстиціальний) і шляхом накладення (аппозіціонний). Внутрішній зростання хряща відбувається в результаті розмноження молодих хондроцитів і новоутворення ізогенних груп клітин. Аппозіціонний зростання відбувається за рахунок перихондрит - проліферації хондробласти глибокого шару, перетворення хондробласти в хондроцити і продукції ними міжклітинної речовини.

3. Существует два способа роста хряща - внутренний (интерстициальный) и путем наложения (аппозиционный). Внутренний рост хряща происходит в результате размножения молодых хондроцитов и новообразования изогенных групп клеток. Аппозиционный рост происходит за счет перихондрию - пролиферацию хондробласты глубокого слоя, превращения хондробласты в хондроциты и продукции ими межклеточном вещества. Физиологическая регенерация хрящевой ткани происходит благодаря деятельности хондроцитов и хондробласты - выработке ими хондромукоиду, коллагена и эластина, способствуют новообразования хондринових волокон. С возрастом в хрящевой ткани уменьшается содержание клеточных элементов и увеличивается количество межклеточных матрикса. При этом по мере превращения хондроцитов первого и второго типов на хондроциты третьего типа в межклеточном веществе хряща снижается количество протеогликанов, хондромукоид замещается альбумоидом, увеличивается содержание коллагеновых волокон. Последние обладают способностью накапливать соли кальция и звапновуватися. Все Эти изменения приводят к уменьшению степени гидратации, потери упругости и увеличения ломкости хрящевой ткани. Наблюдаются также врастание в звапнований хрящ кровеносных сосудов и замена хрящевой ткани костной.

4. Охрястя- оболонка внесуставной поверхні хряща, що полягає із щільної волокнистої сполучної тканини.

5.Гіаліновий хрящ.будова,ф-ії,локалізація.у складі розрізняють,1-перихондрій,2-власне хрящ.

Перихондрій скл з поверхневого волокнистого шару  і глибого клітинного шару.ф-ії:трофіка хряща,фізіологічна регенерація та апозиційний ріст.

Влсне хрящ скл з ізогенних груп хондроцитів і молодих поодиноких хондроцитів оточених хондромукоїдом і хондровими волокнами.хондрові пластинки побудовані з колагену.

Локал:у стінках трахеї,у місцях з’єднання ребер з грудиною,в метаепіфізаних пластинках росту кісток.6.Еластичний хрящ.будова,ф-ії,локалізація.характер.особливість-жовтий колір,здатність розтягуватись.

локал:вушній раковині,слуховій трубі,зовн.слуховому ході,хрящах гортані.

Хондромі пластинки побудов. З еластину.

Не підлягає звапнуванню.

7.Кісткові тканини.загальний план будови.

Клітинні елементи кісткової тканини:-остеобласти,остеоцити,остеобласти,міжклітинна речовина,остеїнові волокна,остеомукоїд.

8.Окістя.Загальний план будови та функції.

Окістя скл:поверхневого волокнистого шару(утв. Колагеновими волокнами),глибокого остеогенного шару(остеобласти і остеоцити)ф-ії:за рахунок здійснюється живлення кісткової тканини,кісткові елементи глибокого шару забезпечують ріст кістки у товщу,її фізіологічну та реперативну регенерацію.

9.К-ція кісткової тка-ни,ретикулофіброзна кіст. тка-на.к-на яка продукує міжклітину реч-ну.

Розрізняють 2 види в залежності від розташування колагенових волокон:

1-пластинчасту(паралельне розташ.,компактну і губчасту);2-грубоволокнисту(невпорядковане розміщення пучків)

Остеїнові волокна та остеомукоїд.

10.Остеобласти.Будова та ф-ії.

Малодеференційовані одноядерні к-ни.В них здійснюється синтез глікопротеїнів і протеогліканів осеомукоїду.

11.Остеокласти.

Великі багатоядерні клінити не правильної форми.у цитоплазмі налічується від 3 до … ядер.)осн.ф-ія-резорбція(розсмоктування)кісткової тканини.

12.Розвиток кістки на місці мезенхіми..характерний для перших тижнів ембріонального роз-ку.

1 етап-формування остеогенного острівця,2 етап-виділення остеогенними клітнами у міжклітинний простір колагену і високомолекулярних біополімерів осеомукоїду.3 етап-утв. грубоволокнистої кістки-полягає у звапнуванні міжклітинної речовини.4 етап-резорбтивна діяльність остеобластів і заміщення грубих рівнонаправленних пучків остеїнових волокон на кісткові пластинки.

13.Розвиток кістки на місці хряща.хар для пізніших етапів ембріонального роз-ку та постнатального онтогенезу.

1етап-формування хрящової моделі майбутньої кістки,2етап-перихондральне окостеніння,3етап-енхондральне окостеніння-утв діафізарного центру окостеніння,4етап-вростання в епіфізарну частину хрящової моделі кровоносних судин та утв. епіфізарного центру окостеніння.

14.Пластинчаста кісткова тканина. Поняття про остеон.

Їй характерне паралельне розташування пучків колагенових волокон з формуванням кісткових пластинок.-розрізняють *компактну*(у ній відсутні порожнини(діалізи трубчастих кісток)),*губчасту*(утв розміщенні під кутом одна до одної трабекули з формуванням харак трубчастої структури(плоскі кістки,епіфізи т.к.))

Остео́н-структурна одиниця компактної речовини кістки, що забезпечує її міцність. Між сусідніми остеонами є  вставні, або проміжні, кісткові пластинки. Зазвичай остеон складається з 5-20 кісткових пластинок. Діаметр остеону 0,3 - 0,4 мм.

15.Кістка як орган.

Належить до скелетних тканин організму.Основна роль-опорно-механічна:завдяки значній міцності кістки забезпечують захист життєво важливих органів від мех.ушкоджень,опору,переміщення тіла в просторі.Кісткова тканина є депо кальцію і фосфору в організмі.

Кістки побудовані з кісткової тканини, які є різновидом сполучної тканинии складаються із клітин (остеоцити) та міжклітинної речовини, яка містить багато колагену,глікопртеїнів тощо, і мінеральних компонентів (в основному кристали гідрооксиапатиту). Завдяки цьому кістка має і гнучкість, і міцність.

16.Ріст трубчастих кісток.джерела росту в ширину і довжину.

ріст здійснюється шляхом апозиції-накладання новоутворення кісткової тканини на вже наявну.ріст в товщу-за рахунок окістя у результаті проліферації і синтетичної активності остеобластів.ріст у довжину-забезпечує розмноження клітин стовпчастої зони метаепіфізарної пластинки.

17. Пластинчаста кісткова тканина. Гістогенез, перебудова та регенерація кісткової тканини

Для пластинчастої кісткової тканини характерним є паралельне розташування пучків колагенових волокон з формуванням, так званих, кісткових пластинок. Залежно від їх орієнтації поділяють на компактну (відсутні порожнини) та губчасту (кісткові пластинки утворюють трабекули з формуванням характерної губчастої структури).

Розрізняють 2 способи розвитку кісткової тканини:

- безпосередньо з мезенхіми – формування у складі мезенхіми остеогенного острівця, куди вростають кровоносні судини; остеогенні клітини виділяють у міжклітинний простір колаген і високомолекулярні біополімери (ліпіди, протеоглікани); звапнування міжклітинної речовини (необхідна наявність лужної фосфатази та остеонектину); заміщення грубих різнонаправлених пучків осеїнових волокон на кісткові пластинки;

- на місці хрящового зачатка – формування хрящової моделі кістки; перихондральне окостеніння (навколо хряща виникає кісткова манжетка); енхондральне окостеніння (утворення діафізарного центру окостеніння); вростання в епіфізарну частину хрящової моделі кровоносних судин та утворення епіфізарного центру окостеніння (утворюється три зони метаепіфізарної пластинки росту: зона незміненого хряща, зона стовпчастого хряща, зона пухирчастих клітин).

Фізіологічна регенерація = безперервна заміна старих кісткових пластинок новоутвореними, формуванні нових остенів на місці резорбованих (концентрація остеобластів і процеси апозиційного новоутворення кістки пов’язані з від’ємними зарядами, а концентрація остеокластів і процес резорбції – з позитивними зарядами на поверхні кісткової тканини).

18. Назвати і схематично замалювати клітини, які продукують та руйнують кісткову тканину

Остеобласти – клітини неправильної кубічної чи полігональної форми. Цитоплазма базофільна (високий вміст РНК), добре розвинута гранулярна ЕПС та комплекс Гольджі. Мало диференційовані одноядерні клітини, в яких здійснюється синтез колагену, глікопротеїнів, протеогліканів осеомукоїду.

Остеокласти – великі багатоядерні (3- кілька десятків) клітини неправильної округлої форми. Основна функція – резорбція кісткової тканини. Цитоплазма оксифільна. Багато лізосом, мітохондрій. На поверхні клітини, що прилягає до місця руйнування кісти розрізняють:  зону адсорбції і секреції ферментів і замикальну зону, яка ізолює ділянку контакту від прилеглої тканини.

1. М’язові тканини.  Морфо функціональна та філогенетична класифікації (схематично)

М’язова тканина побудована з елементів, зданих до скорочення.

 Морфо-функціональна класифікація: гладка і посмугована (скелетна і серцева).

Генетична (за Хлопіним):

- соматичний тип (міотоми мезодерми – скелетна м’язова)

- целомічний тип (вентральна мезодерма – серцева м’язова)

- вісцеральний тип (мезенхіма – гладка м’язова внутрішніх органів)

- невральний тип (нервова трубка – гладкі міозити м’язів райдужної оболонки ока)

- епідермальний тип (шкірна ектодерма – міоепітеліальні кошикоподібні клітини залоз)

2. Гладка м’язова тканина. Структурно-функціональна одиниця (замалювати схематично), регенерація.

Гладка м’зова входить до складу стінок порожнистих внутрішніх органів. Структурною і функціональною одиницею є гладкий міозит – веретеноподібна клітина з паличко-подібним ядром у центральній розширеній частині клітини з невеликою кількістю гетеро хроматину. Цитоплазма оксифільно. Багато мітохондрій. Цитоплазма містить включення. Міофіламенти орієнтовані вздовж довгої осі, але не дуже упорядковано, не утворюють міофібрили.

Регенерація - ???

3. Гладка м’язова тканина. Способи взаємодії гладких міоцитів в тканині (замалювати схематично)

 Оболонка кожного міоцита огорнута тонкою базальною мембраною, в якій є отвори. В цих ділянках м’язові клітини контактують між собою (щілинні контакти або нексуси) навколо м’язових клітин ретикулярні, еластичні, тонкі колагенові утворюють ендомізій, який поєднує сусідні міозити. М’язові групи з 10-12 м’язових клітин, у свою чергу, об’єднуються у м’язові пласти, між якими розташована пухка сполучна тканина з кровоносними судинами та нервами.

4. Посмугована скелетна м’язова тканина. Структурно-функціональна одиниця (замалювати схематично). Регенерація

Одиницею будови скелетної м’язової тканини є міосимпласт з прилеглими міосателіоцитами. М’язове волокно має форму циліндра, кінці якого заокруглені, скошені чи зазубрені. Довжина м’язового волокна збігається з довжиною м’яза. Волокно оточене сарколемою (складається з зовнішньої базальної мембрани, яка пов’язана з ретикулярними та тонкими колагеновими волокнами прилеглої сполучної тканини. Внутрішній шар = плазмолема міосимпласта).

Між базальною мембраною і плазмо лемою міосимпласта є міосателіоцити (одноядерні клітини з загальними органелами. Функція – процес росту і регенерації м’язового волокна).

Цитоплазма міосимпласта = саркоплазма. Ядра (до кількох десятків тисяч) розташовані під плазмолемою, мають видовжено-овальну форму, небагато гетеро хроматину. В цитоплазмі є загальні органели (мітохондрії великі, їх багато; гранулярна ЕПС слабко, гранулярна - краще), включення і спеціальні органели – міофібрили.

У міофібрили послідовно розташовані темні анізотропні смуги (диски А) та світлі ізотропні смуги (диски І). Усередині кожної І-смуги є темна лінія = телофрагма, у центрі А-смуги є М-смуга = мезофрагма. Структурною одиницею міофібрили є саркомер (ділянка між 2 телофрагмами).

5. Посмугована м’язова тканина. Структурно-функціональна одиниця міофібрили (замалювати схематично)

Див 4

6. Посмугована скелетна м’язова тканина. Поняття про червоні та білі м’язові волокна. Будова м’яза як органа (замалювати схематично)

У сарколемі міститься розчинний пігментний білок – міоглобін, який зумовлює червоний колір м’язових волокон. Залежно від вмісту саркоплазми, товщини і ферментного складу м’язові волокна поділяють на червоні, білі і проміжні.  Червоні волокна мають незначну товщину, велику к-сть міоглобіну, численні мітохондрії, багаті на цитохроми. Білі волокна товстіші, містять менше міоглобіну та мітохондрій.

Окремі посмуговані волокна об’єднуються сполучною тканиною в орган – м’яз. Тонкі прошарки сполучної тканини між м’язовими волокнами називають ендомізієм. Ретикулярні та колагенові волокна ендомізію переплітаються з волокнами сарколеми. На кінці кожного м’язового волокна плазмолема утворює вузькі глибокі вгинання, у які проникають колагенові та ретикулярні волокна. Останні пронизують базальну мембрану та утворюють петлю, яка фіксується до плазмо леми саме у тому місці, де з нею контактують актинові нитки саркомерів. Після виходу за межі базальної мембрани ретикулярні волокна переплітаються з колагеновими, які переходять у сухожилля. Кожне м’язове волокно моє самостійну іннервацію й оточене сіткою гемо капілярів. Комплекс волокна з прилеглими елементами пухкої сполучної тканини є структурною і функціональною одиницею скелетного м’яза і  має назву міона. М’язові волокна об’єднуються у пучки, між якими – товстіші прошарки пухкої сполучної тканини – перимізій. У ньому містяться також і еластичні волокна. Сполучна тканина, що оточує м’яз у цілому = епімізій.

7. Серцева м’язова тканина. Будова (замалювати схематично)

Серцевий м’яз побудований з волокон, які анастомозують між собою, утворюючи сітку. М’язові волокна утворені одно- або двоядерними м’язовими клітинами, які розташовані ланцюжком і мають у розрізі прямокутну форму.

8. Кардіоміоцити. Класифікація. Морфо-функціональна характеристика

 Розрізняють скоротливі кардіоміоцити і провідні (атипові). Серед останніх за морфологічними та функціональноми особливостями можна визначити 3 типи клітин: пейсмейкерні (невеликі розміри, багатокутна форма, невелика к-сть міофібрили, які не мають упорядкованої орієнтації, Т-система відсутня, багато піноцитозних пухирців та кавеол – ці клітини генерують імпульси до скорочення); перехідні клітини (тонкі витягнуті клітини, міофібрили більше, ніж у попередніх, розташування менш упорядковане – передають збудження до клітин пучка і скоротливих елементів міокарда); волокна Пуркіньє (великі, міофібрили на периферії, орієнтовані у різних напрямках – збудження від перехідних клітин до скоротливих кардіоміоцитів шлуночків).

9. Скоротливі кардіоміоцити. Особливості будови (замалювати схематично)

Ядро локалізується в центрі клітини, в порівнянні з скелетними м’язовими волокнам, більше саркоплазми, мало міофібрили. Значна к-сть мітохондрій, саркоплазматична сітка не так сильно розвинена, як у склетних, не утворює великих термінальних пластинок. У клітинах серцевого м’яза Т-трубочки заходять всередину на рівні Z-пластинок. Т-трубочки у 2 рази ширші, вистелені базальною мембраною, яка лежить назовні від сарколеми. Тут відсутня типова картина тріад. Скоротливі кардіоміоцити сполучаються між собою з утворенням так званих вставних дисків.

10. Вставні диски. Замалювати схематично, вказати типи контактів.

 На гістологічних препаратах вставні диски мають вигляд темних смужок, що йдуть упоперек волокна. У поперечних ділянках вставного диска є міжклітинні сполучення трьох типів. Перший – десмосомоподібні контакти, які забезпечують міцне з’єдання клітин; другий – розкидані у поперечних ділянках невеликі щілинні контакти (нексуси), які забезпечують метаболічний зв’язок сусідніх клітин. У поздовжніх ділянках вставного диску є багато щілинних контактів великих розмірів, яким належить головна роль у проведенні імпульсів на типові серцеві міозити. Третій – зони прилипання

1.Нервова тканина. Джерело розвитку. Загальний план будови та ф-і зони нейронів (замалювати схематично).

Розвивається з нервової пластинки, яка є потовщенням ектодерми на спинному боці зародка. Нервова пластинка послідовно перетворюється у нервовий жолобок і нервову трубку, яка, замикаючись, відокремлюється від шкірної ектодерми. Частина клітин нервової пластинки лишається між нервовою трубкою і шкірною ектодермою у вигляді пухкого скупчення клітин, так званого нервового гребеня або гангліозної пластинки. Клітини гребеня мігрують у латеральному і вентральному напрямках і дають такі похідні: ядра черепних нервів, нейрони спинномозкових і автономних вузлів, нейролемоцити (нейроглію), пігментні клітини шкіри.

Нервова тканина складається з нервових клітин (нейронів) і розміщених між ними допоміжних клітин. Нейрони здатні сприймати подразнення, перетворювати його на нервові імпульси і проводити їх до інших нейронів або певних органів. Кожний нейрон складається з тіла і відростків. У тілі розташоване ядро й інші органели. Відростки можуть бути двох типів. Довгий, розгалужений на кінці, має назву аксон. Довжина аксона може сягати десятків сантиметрів, а інколи до 2-3 м. Його функція — проведення нервового збудження від тіла нейрона. Переважно короткі, деревоподібно розгалужені відростки нейрона називають дендритами; ними нервове збудження проводиться до тіла нейрона.

2.Морфологічна класифікація нейронів (замалювати схематично).

Базується на кількості відростків:

1)уніполярні (мають один відросток - аксон);

2)біполярні (мають два відростки – аксон і дендрит);

3)псевдоуніполярні (один відросток, який на певній відстані галузиться на два відростки – аксон і дендрит);

4)мультиполярні (мають багато відростків, серед яких один - аксон).

3.Функціональна класифікація нейронів (замалювати схематично в складі рефлекторної дуги).

Грунтується на функції нервової клітини у складі рефлекторної дуги:

1)аферентні (рецепторні, чутливі) сприймають подразнення і трансформують його у нервовий імпульс;

2)асоціативні (вставні) передають нервовий імпульс між нейронами;

3)еферентні (моторні, рухові, секреторні) забезпечують передачу нервового імпульсу на робочу структуру.

4.Хроматофільна субстанція. Будова, місця розташування, способи виявлення, функція (замалювати схематично).

Під електронним мікроскопом ця структура виявляється гранулярною ЕПС з паралельним розташуванням її сплощених цистерн (так звана ергастоплазма), де інтенсивно синтезується білок. Тигроїд є показником функціонального стану нейрона. Під світловим мікроскопом – грудочки і зерна, які фарбуються базофільно, локалізовані у перикаріоні та дендритах нейронів і не виявляються в аксонах.

5. Нейрофібрили. Будова, місця розташування, способи виявлення, функція (змалювати схематично).

Нейрофібрили – органели спеціального призначення нейронів, їх можна виявити у цитоплазмі при імпрегнації сріблом. Вони мають вигляд тонких ниток діаметром 0,3-0,5 мкм, утворюють щільну сітку в перикаріоні і мають паралельну орієнтацію у складі дендритів і нейритів, включаючи їх найтонші кінцеві розгалуження.Методом електронної мікроскопії виявлено, що нейрофібрилам відповідають пучки нейрофіламентів (мікрофіламентів) діаметром 6-10 нм і нейротубули (мікротрубочки) діаметром 20-30 нм. Мікрофіламенти і мікротрубочки належать до системи цитоскелета нейронів. Останній побудований головним чином з білка спектрину, який є аналогом спектрину еритроцитів і був відкритий пізніше в тканині головного мозку.

6. Нейроглія. Класифікація (схематично), будова та значення різних типів нейроглії.

Середовище, що оточує нейрони. Термін був запропонований Вірховим у 1846. Побудована з клітин. ЇЇ функції: опорна, розмежувальна, трофічна, секреторна, захисна.

Поділяється на:

Макроглію

Астроцити, які зустрічаються винятково в головному та спинному мозку, мають характерний малюнок відростків, що надає клітині зіркоподібного вигляду (завдяки чому в назві з'явився префікс астро-). Головною функцією астроцитів є підтримка, завдяки різним механізмам, сприятливого хімічного середовища для передачі нервових сигналів.

Олігодендроцити, котрі також зустрічаються тільки в ЦНС, формують шарувату жиро-насичену «обгортку», що називається «мієлін», навколо багатьох, але не всіх, аксонів всередині ЦНС. Мієлін відіграє важливу роль у визначенні швидкості розповсюдження електричного нервового сигналу як вибірковий ізолятор. В периферійній нервовіій системі цю функцію електричного ізолятора виконують виробляючі мієлін Шванівські клітини.

Епендимні клітини (або епендимоцити) вистілають заповнені рідиною шлуночки та інші порожнини мозку. Биттям наявних у них війок вони спонукають до руху заповнюючу мозкові порожнини цереброспінальну рідину.

Клітини мікроглії походять безпосередньо від стовбурових клітин («батьківських» клітин для всіх інших типів клітин в нервовій системі; астроцити та олігодендроцити розвиваються вже з мікроглії). Мікрогліальні клітини мають багато функцій, притаманних макрофагам, і є, завдяки цьому, «сміттярами», що поглинають загиблі клітини або відокремлені завдяки деякому ушкодженню частини нормальних клітин. На додаток мікроглія, як і макрофаги в інших тканинах, секретує сигнальні молекули — насамперед широкий спектр цитокінів, котрі також продукуються клітинами імунної системи — що можуть запобігати місцевим запаленням та впливати на процеси виживання або загибелі оточуючих клітин. Завдяки цьому деякі нейробіологи кваліфікують мікроглію як спеціалізований тип макрофагів. В разі ушкодження кількість мікроглії на ушкодженій ділянці значно зростає: деякі з «додаткових» клітин утворюються із вже існуючих в мозку клітин мікроглії, а деякі — з макрофагів, що мігрують до ушкодженої ділянки та потрапляють в мозок через місцеві розриви в кровоносних судинах. 

7.Нервові волокна. Морфофункціональна характеристика мієлінових нервових волокон (замалювати).

Нервові волокна – відростки нервових клітин, укриті оболонками.

 

8.Нервові волокна. Морфофункціональна характеристика безмієлінових нервових волокон (замалювати).

9. Розвиток мієлінових волокон в ембріогенезі (замалювати).

У процесі розвитку мієлінового волокна осьовий циліндр занурюється в нейролемоцит, втягуючи його плазмолему і утворюючи глибоку складку. Цю подвійну складку (дуплікатуру) нейролемоцита називають мезаксоном. У процесі подальшого ґенезу волокна, нейролемоцит (швановська клітина) повільно обертається навколо осьового циліндра, в результаті чого мезаксон багато разів огортає його. Дивись 1 питання!!!

10. Безмієлінове волокно кабельного типу (замалювати).

Мезаксон – подвійна складка (дуплікатура) плазмолеми нейролемоцита.

Клітини Шванна – олігодендроцити – оточують оболонки навколо відростків нервових клітин.

11.Нервові закінчення. Класифікація типів. Намалювати рефлекторну дугу і позначити на ній нервові закінчення.

Три види нервових закінчень: рецептори, ефектори і міжнейронні  синапси.Рецептори – це чутливі нервові закінчення які сприймають подразнення із зовнішнього середовища (екстерорецептори), або із внутрішнього середовища (інтерорецептори). У залежності від  подразника, на який реагують рецептори розрізняють:

-терморецептори (сприймають зміни температури) ;

-барорецептори (сприймають зміни тиску);

-механорецептори (реагують на механічні подразники);

-хеморецептори (реагують на хімічні подразники).

У залежності від будови розрізняють

Вільні нервові закінчення складаються тільки з кінцевих розгалужень дендрита.

Невільні інкапсульовані нервові закінчення складаються з розгалужень дендрита, клітин нейроглії, сполучнотканинної капсули.

Невільні некапсульовані складаються з розгалужень дендрита і клітин нейроглії.      

12. Рухові нервові закінчення. Морфофункціональна характеристика (намалювати ультрамікроскопічну схему будови).

Рухові нервові закінчення в скелетних м’язах утворені закінченнями аксонів  і плазмолемою м’язового волокна. У цій ділянці аксон утрачає мієлінову оболонку і розгалужується. Плазмолема утворює заглиблення, в яке занурюється аксон – утворюється нервово-м’язовий синапс. Медіатор-ацетилхолін.

НЕРВОВА ТКАНИНА

Рецептори - чутливі закінчення дендритів нервових клітин, пристосовані до сприйняття подразнень, що надходить до організму. Розрізняють екстерорецептори, які сприймають подразнення із зовн середовища, та інтерорецептори, подразнення до яких надходять від власних тканин організму. Різновидом інтерорецепторів є пропріорецептори - чутл нерв зак у м'язах і сухожиллях, які беруть участь у регуляціі рухів і положення тіла у просторі. Залежно від природи подразнень, які зумовлюють збудження чутл нерв зак, останні поділяють на терморецептори, механорецептори, барорецептори, хеморецептори, ноцицептори (сприймають больові подразнення) тощо.

Залежно від будови розрізняють вільні нерв зак, які складаються лише з кінцевих розгалужень дендрита, та нерв рецептори, у яких розгалуження дендрита оточені клітинами нейроглії. Якщо нерв зак оточує сполучнотканинна капсула, вони отримують назву капсульованих; ті рецептори, які не мають - некапсульованими.

13) Для епітелию характерни вільні нерв зак.

14) Чутливі нерв зак у складі сполучної тканини поділяються на капсульовані, некапсульовані та нервово-сухожильні веретена ("сухожильні органи Гольджі" - механорецепція).

Серед капсульованих залежно від будови розрізняють:

- пластинчасті тільця Пачіні (багато у сполучній тканині всіх внутрішніх органів і в глубоких шарах дерми - сприймають зміну тиску),

- цибулиноподібні тільця Гольджі-Маццоні (локалізуються у шкірі, серозних та слизових оболонках - функції барорецепції. Різновидом пластинчастих тілець дерми є тільця Руффіні - відчуття постійного тиску),

- дотикові тільця Мейснера (у сосочковому шарі дерми - забезпечують тактильну чутливість),

- кінцеві колби Краузе (у кон'юктиві ока, сполучній тканині язика та зовн статевих органів - забезпечують холодову чутливість).

15) -

16) У м'язовій тканині чутливі нерв зак утворюють нервово-м'язові веретена, які сприймають зміну довжини м'язового волокна і швидкість цієї зміни.

17) Нервові зак (terminationes nervorum) поділяють на рецептори, ефектори та міжнейронні синапси.

Рецептори - чутливі закінчення дендритів нервових клітин, пристосовані до сприйняття подразнень, що надходить до організму. Розрізняють екстерорецептори та інтерорецептори.

Ефектори утворені закінченнями аксонів нерв клітин. Розрізняють рухові та секреторні. Рухові у скелетних м'язах утворені терміналями аксонів нейронів рухових ядер передніх рогів спинного мозку або моторних ядер головного мозку. Секреторні виділяють у кров нейрогормони, зв'язуючи тим самим нервову та гуморальну регуляції.

Міжнейронні синапси - форма міжклітинних зв'язків.

Складаються з пресинаптичної, постсинаптичної частин та синаптичної щілини. Пресинаптична частина розширена, утворена термінальною гілкою аксона клітини, яка передає імпульс, містить мітохондрії та синаптичні пухирці, які містять так звані медіатори (нейротрансмітери), вкрита пресинаптичною мембраною, яка утворює пресинаптичну решітку для пухирців. Постсинаптична частина синапса може містити значні скупчення електронно-щільного матеріалу. Її мембрана містить у своєму складі специфічний білок - рецептор медіатора. Синаптична щілина заповнена тканинною рідиною, містить ниткоподібні структури, які утримуюють разом дві частини синапсу.

Функція: збуджувальний або гальмівний вплив на постсинаптичну частину.

← Предыдущая
Страница 1
Следующая →

Скачать

Gistologia_Modul_1.doc

Gistologia_Modul_1.doc
Размер: 543.5 Кб

Бесплатно Скачать

Пожаловаться на материал

Короткі відповіді по гістології. Клітинна теорія. Загальна ембріологія. Тканини внутрішнього середовища. Імплантація.

У нас самая большая информационная база в рунете, поэтому Вы всегда можете найти походите запросы

Искать ещё по теме...

Похожие материалы:

Рынок ценных бумаг

Курсовая работа по дисциплине «Макроэкономика». Основные понятия рынка ценных бумаг. Роль рынка ценных бумаг как механизма, анализ рынка, финансовый рынок, привлечение и вложение капитала. Структура рынка ценных бумаг. Рынок государственных ценных бумаг. Современное состояние рынка ценных бумаг в России. Проблемы развития рынка ценных бумаг и пути их решения

Требования к помещению овощного цеха

Линия переработки картофеля и корнеплодов. Линия переработке капусты, лука, зелени и сезонных овощей. Организация процесса нарезки овощей. Расчет площади овощного цеха

Алгоритм. Реферат

 Определение алгоритма.  Свойства алгоритмов.  Виды алгоритмов и их реализация.  Методы изображение алгоритмов.  Словесное описание алгоритма.  Блок-схема алгоритма.  Псевдокод.  Программное представление алгоритма.

Расчет размерных цепей

Практическая работа Цель работы: По заданным размерам и предельным отклонениям рассчитать номинальный размер замыкающего звена, его предельные отклонения и допуск.

Конспекты лекций по литургике.

Итак, литургика это наука о богослужении. Но понятие это очень широкое, поскольку литургическими аспектами пронизана вся жизнь Православной Церкви.

Сохранить?

Пропустить...

Введите код

Ok