Создание локальной сети и настройке оборудования для доступа обучающихся к сети интернет

Разработка технического проекта

На выполнение работ по созданию локальной сети и настройке оборудования для доступа обучающихся к сети интернет, были утверждены следующие требования:

Создание локальной сети и настройка оборудования для доступа к сети Интернет, используя для контроля биллинговую систему;

Свободное подключение обучающихся к ресурсам Интернет только в учебных целях;

Маршрутизацию в сеть Интернет, необходимо организовать программно на ОС Windows;

Выбор оборудования должен быть основан на технических характеристиках, способных удовлетворить требованиям к скорости передачи данных;

Оборудование должно быть безопасно, защищено от поражения людей электрическим током, не должно создавать электрических помех в сети. Уровень электромагнитных излучений не должен превышать установленные санитарные нормы;

Анализ существующих решений для построения сети

Любое сетевое устройство, маршрутизатор, коммутатор, сетевая карта рабочей станции или сервера для своей работы используют сетевую модель OSI, состоящую из семи уровней. Уровни располагаются снизу вверх, на первом, самом низком уровне расположен физический уровень, на седьмом, высшем уровне расположен уровень приложений или прикладной.

В таблице 1 показана сетевая модель OSI с указанием функции на каждом уровне. Высший уровень 7 - прикладной, 6- представительский, 5 - сеансовый, 4 - транспортный, 3 - сетевой, 2 - канальный, самый низший уровень 1 - физический.

Сетевая модель OSI - абстрактная сетевая модель для коммуникаций и разработки сетевых протоколов. Предлагает взгляд на компьютерную сеть с точки зрения измерений. Каждое измерение обслуживает свою часть процесса взаимодействия. Благодаря такой структуре совместная работа сетевого оборудования и программного обеспечения становится гораздо проще и прозрачнее.

Как видно в таблице 1 аппаратные сетевые устройства не работают с данными, так как анализ данных требует большой вычислительной способности, дать которую, процессор аппарата не способен.

Таблица 1 Сетевая модель OSI

Модель OSI

Тип данных

Уровень (layer)

Функции

Данные

7. Прикладной (application)

Доступ к сетевым службам

6. Представительский (presentation)

Представление и кодирование данных

5. Сеансовый (session)

Управление сеансом связи

Сегменты

4. Транспортный (transport)

Прямая связь между конечными пунктами и надежность

Пакеты

3. Сетевой (network)

Определение маршрута и логическая адресация

Кадры

2. Канальный (data link)

Физическая адресация

Биты

1. Физический (physical)

Работа со средой передачи, сигналами и двоичными данными

Мы должны понимать, что если кадры и пакеты имеют ограниченный размер и для их обработки процессор может применять аппаратный алгоритм обработки, то для обработки данных, которые имеют произвольный размер метод обработки только программный, с выделением под это больше оперативной памяти и ресурсов центрального процессора.

Обзор топологии сетей

Термин «топология», или «топология сети», характеризует физическое расположение компьютеров, кабелей и других компонентов сети. Топология – это стандартный термин, который используется профессионалами при описании основной компоновки сети. Кроме термина «топология», для описания физической компоновки употребляют также следующее:

физическое расположение;

компоновка;

диаграмма;

карта.

Топология сети обуславливает её характеристики. В частности, выбор той или иной топологии влияет:

на состав необходимого сетевого оборудования;

характеристики сетевого оборудования;

возможности расширения сети;

способ управления сетью.

Чтобы совместно использовать ресурсы или выполнять другие сетевые задачи, компьютеры должны быть подключены друг к другу. Для этой цели в большинстве сетей применяется кабель.

Однако просто подключить компьютер к кабелю, соединяющему другие компьютеры, недостаточно. Разные типы кабелей в сочетании с различными сетевыми платами, сетевыми операционными системами и другими компонентами требуют и различного взаимного расположения компьютеров.

Каждая топология сети налагает ряд условий. Например, она может диктовать не только тип кабеля, но и способ его прокладки.

Топология может также определять способ взаимодействия компьютеров в сети. Различным видам топологий соответствуют различные методы взаимодействия, и эти методы оказывают большое влияние на сеть.

Все сети строятся на основе трёх базовых топологий:

шина;

звезда;

кольцо.

Если компьютеры подключены вдоль одного кабеля (сегмента), топология называется шиной. В том случае, когда компьютеры подключены к сегментам кабеля, исходящим из одной точки, или концентратора, топология называется звездой. Если кабель, к которому подключены компьютеры, замкнут в кольцо, такая топология называется кольца.

Хотя сами по себе базовые топологии несложны, в реальности часто встречаются довольно сложные комбинации, объединяющие свойства нескольких топологий.

Шина

Топологию «шина» часто называют «линейной шиной». Данная топология относится к наиболее простым и широко распространённым топологиям. В ней используется один кабель, именуемый магистралью или сегментом, вдоль которого подключены все компьютеры сети (рис. 1.4).

Рисунок 1.4. Простая сеть с топологией «шина»

В сети с топологией «шина» компьютеры адресуют данные конкретному компьютеру, передавая их по кабелю в виде электрических сигналов. Что бы понять процесс взаимодействия компьютеров по шине, необходимо уяснить следующие понятия:

передача сигнала;

отражение сигнала;

терминатор.

Данные в виде электрических сигналов передаются всем компьютерам сети; однако информацию принимает только тот, адрес которого соответствует адресу получателя, зашифрованному в этих сигналах. Причём в каждый момент времени только один компьютер может вести передачу.

Так как данные в сеть передаются лишь одним компьютером, её производительность зависит от количества компьютеров, подключённых к шине. Чем их больше, т.е. чем больше компьютеров, ожидающих передачи данных, тем медленнее работает сеть.

Однако вывести прямую зависимость между пропускной способностью сети и количеством компьютеров в ней нельзя. Ибо, кроме числа компьютеров, на быстродействие сети влияет множество факторов, в том числе:

характеристики аппаратного обеспечения компьютеров в сети;

частота, с которой компьютеры передают данные;

тип работающих сетевых приложений;

тип сетевого кабеля;

расстояние между компьютерами в сети.

Шина – пассивная топология. Это значит, что компьютеры только «слушают» передаваемые по сети данные, но не перемещают их от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не скажется на работе стальных. В активных топологиях компьютеры регенерируют сигналы и передают их по сети.

Данные, или электрические сигналы, распространяются по всей сети – от одного конца кабеля к другому. Если не предпринимать никаких специальных действий, сигнал, достигая конца кабеля, будет отражаться и не позволит другим компьютерам осуществлять передачу. Поэтому, после того как данные достигнут адресата, электрические сигналы необходимо погасить.

Чтобы предотвратить отражение электрических сигналов, на каждом конце кабеля устанавливают терминаторы, поглощающие эти сигналы.

Все концы сетевого кабеля должны быть к чему-нибудь подключены, например, к компьютеру или к баррел-коннектору – для увеличения длины кабеля. К любому свободному – не подключённому – концу кабеля должен быть подсоединён терминатор, чтобы предотвратить отражение электрических сигналов.

Разрыв сетевого кабеля происходит при его физическом разрыве или отсоединении одного из его концов. Возможна также ситуация, когда на одном или нескольких концах кабеля отсутствуют терминаторы, что приводит к отражению электрических сигналов в кабеле и прекращению функционирования сети. Сеть «падает».

Сами по себе компьютеры в сети остаются полностью работоспособными, но до тех пор, пока сегмент разорван, они не могут взаимодействовать друг с другом.

Увеличение участка, охватываемого сетью, вызывает необходимость её расширения. В сети с топологией «шина» кабель обычно удлиняется двумя способами.

Для соединения двух отрезков кабеля можно воспользоваться баррел-коннектором. Но злоупотреблять ими не стоит, так как сигнал при этом ослабевает. Лучше купить один длинный кабель, чем соединять несколько коротких отрезков. При большом количестве «стыковок» нередко происходит искажение сигнала.

Для соединения двух отрезков кабеля служит репитер. В отличие от коннектора, он усиливает сигнал перед передачей его в следующий сегмент. Поэтому предпочтительнее использовать репитер, чем баррел-коннектор или даже один длинный кабель: сигналы на большие расстояния пойдут без искажений.

Звезда

При топологии «звезда» все компьютеры с помощью сегментов кабеля подключаются к центральному компоненту, именуемому концентратором (рис. 1.5). Сигналы от передающего компьютера поступают через концентратор ко всем остальным. Эта топология возникла на заре вычислительной техники, когда компьютеры были подключены к центральному, главному, компьютеру.

Рисунок 1.5. Простая сеть с топологией «звезда»

В сетях с топологией «звезда» подключение кабеля и управление конфигурацией сети централизованы. Но есть и недостаток: так как все компьютеры подключены к центральной точке, для больших сетей значительно увеличивается расход кабеля. К тому же, если центральный компонент выйдет из строя, нарушится работа всей сети.

А если выйдет из строя только один компьютер (или кабель, соединяющий его с концентратором), то лишь этот компьютер не сможет передавать или принимать данные по сети. На остальные компьютеры в сети это не повлияет.

Кольцо

При топологии «кольцо» компьютеры подключаются к кабелю, замкнутому в кольцо. Поэтому у кабеля просто не может быть свободного конца, к которому надо подключать терминатор (рис. 1.7). Сигналы передаются по кольцу в одном направлении и проходят через каждый компьютер. В отличие от пассивной топологии «шина», здесь каждый компьютер выступает в роли репитера, усиливая сигналы и передавая их следующему компьютеру. Поэтому, если выйдет из строя один компьютер, прекращает функционировать вся сеть.

Рисунок 1.7. Простая сеть с топологией «кольцо»

Передача маркера

Один из принципов передачи данных в кольцевой сети носит название передачи маркера. Суть его такова. Маркер последовательно, от одного компьютера к другому, передаётся до тех пор, пока его не получит тот, который «хочет» передать данные. Передающий компьютер изменяет маркер, помещает электронный адрес в данные и посылает их по кольцу.

Данные проходят через каждый компьютер, пока не окажутся у того, чей адрес совпадает с адресом получателя, указанным в данных.

После этого принимающий компьютер посылает передающему сообщение, где подтверждает факт приёма данных. Получив подтверждение, передающий компьютер создаёт новый маркер и возвращает его в сеть.

На первый взгляд кажется, что передача маркера отнимает много времени, однако на самом деле маркер передвигается практически со скоростью света. В кольце диаметром 200 м маркер может циркулировать с частотой 10000 оборотов в секунду.

Комбинированные топологии

В настоящее время часто используются топологии, которые комбинируют компоновку сети по принципу шины, звезды и кольца.

Звезда-шина

Звезда-шина – это комбинация топологий «шина» и «звезда». Чаще всего это выглядит так: несколько сетей с топологией «звезда» объединяются при помощи магистральной линейной шины (рис.1.8).

В этом случае выход из строя одного компьютера не оказывает никакого влияния на сеть – остальные компьютеры по-прежнему взаимодействуют друг с другом. А выход из строя концентратора повлечёт за собой остановку подключённых к нему компьютеров и концентраторов.

Рисунок 1.8. Сеть с топологией «звезда-шина»

Звезда-кольцо

Звезда-кольцо кажется несколько похожей на звезду-шину. И в той, и в другой топологии компьютеры подключены к концентратору, который фактически и формирует кольцо или шину. Отличие в том, что концентраторы в звезде-шине соединены магистральной линейной шиной, а в звезде-кольце на основе главного концентратора они образуют звезду (рис.1.9).

Рисунок 1.9. Сеть с топологией «звезда-кольцо»

Выбор топологии для построения сети

На основе рассмотренных в разделе топологий для построения сети в кабинете предпочтительнее всего использовать топологию «Звезда», так как она является простой в реализации и более отказоустойчивой чем «Шина» или «Кольцо». Смешанные топологии применять не имеет смысла, так как сеть слишком мала.

Маршрутизаторы

Маршрутиза́тор (router) - сетевое устройство, пересылающее пакеты данных между различными сегментами сети и принимающее решения на основании информации о топологии сети и определённых правил, заданных администратором.

Существует 2 вида маршрутизаторов: программный и аппаратный (программно-аппаратный). В первом случае он является частью операционной системы одного из компьютеров сети, во втором случае - специальным вычислительным устройством.

Аппаратный маршрутизатор - специализированное устройство, собранное на узкоспециализированном процессоре RISC или ARM, объединяющее в отдельном корпусе множество маршрутизирующих модулей.

Разделим на 4 уровня работу маршрутизатора:

уровень интерфейсов;

уровень сетевого протокола;

канальный уровень;

уровень протоколов маршрутизации.

Уровень интерфейсов (нижний уровень) обеспечивает физический интерфейс со средой передачи данных. Для этого маршрутизатор должен иметь до нескольких десятков разъемов соответствующих типов. Часть интерфейсов используется для подключения к локальной сети, часть - к глобальным сетям. Самой важной характеристикой для потребителя является перечень поддерживаемых маршрутизатором физических интерфейсов (портов). В зависимости от выбранной конфигурации каждый порт поддерживает определенный вид протокола передачи данных. Каждый порт маршрутизатора является конечной точкой подсети, поэтому ему присваивается два типа адресов - локальный и сетевой.

Уровень сетевого протокола реализуется с помощью специального модуля, который вычисляет контрольную сумму пакета, время жизни пакета в сети, отбрасывает поврежденные пакеты. В отличие от мостов и коммутаторов, маршрутизатор имеет функцию фильтрации трафика, т.е. он способен обрабатывать и анализировать отдельные поля пакетов. Для управления этой функцией он оснащается пользовательским интерфейсом, с помощью которого можно без проблем задавать правила фильтрации.

Второй задачей уровня сетевого протокола является обслуживание очередей пакетов, если скорость их обработки меньше скорости поступления. При этом после достижения очереди определенной критической величины, вновь поступающие пакеты отбрасываются.

Третьей и основной задачей сетевого уровня является определение маршрута пакета. Из поля адреса назначения пакета извлекается номер сети, затем маршрутизатор по нему определяет сетевой адрес следующего маршрутизатора и идентификатор своего порта, через который необходимо передать данный пакет. Если этот номер отсутствует, то пакет отбрасывается. Для передачи пакета другому маршрутизатору необходимо перевести его сетевой адрес в локальный, используя специальную таблицу соответствия.

Четвертой функцией сетевого уровня является фрагментация пакетов, если у них не совпадают максимально допустимые значения длины поля данных кадра.

На канальном уровне производится упаковка пакета в кадр соответствующего формата с записью локального адреса следующего маршрутизатора. После этого кадр отправляется в сеть.

С помощью протоколов маршрутизации производится построение таблиц маршрутизации в автоматическом режиме. Эти протоколы не следует путать с сетевыми так как они собирают и передают только служебную информацию (в частности об изменениях в сети). В качестве транспорта используются обычные сетевые протоколы.

На основе карт маршрутизации определяется наикратчайший путь до конечного адреса.

В отличие от коммутаторов и мостов, в таблицах маршрутизации записываются номера подсетей, а не MAC-адреса. Вторым отличием является активный обмен с другими маршрутизаторами информацией о топологии связей в подсетях, их пропускная способность и состояние каналов.

Особенности современных маршрутизаторов.

Основные требования, которые предъявляются к современному маршрутизатору это функциональность и скорость работы.

Функциональность характеризуется набором поддерживаемых сетевых протоколов, протоколов маршрутизации, портов. Она достигается с помощью использования модульной конструкции, когда в одно шасси устанавливается несколько блоков с портами определенного типа.

Требование скорости работы маршрутизатора особенно важно в современных условиях, когда суммарная скорость движения пакетов может достигать нескольких терабит в секунду. С учетом этого требования маршрутизаторы могут строится:

а) однопроцессорными, когда каждый протокол реализуется с помощью специального программного модуля;

б) многопроцессорными, когда каждый порт имеет свой специальный процессор. При этом для нескольких портов может использоваться и общий специализированный процессор. Такая узкая специализация позволяет существенно увеличить скорость работы маршрутизатора.

Программный маршрутизатор - это рабочая станция или выделенный сервер, имеющий несколько сетевых интерфейсов и снабженный специальным программным обеспечением, настроенным на маршрутизацию.

Под специальным программным обеспечением может выступать ОС на ядре Linux, ОС WINDOWS или ОС FreeBSD, у которой в базовой установке уже заложен функционал маршрутизации.

У каждого из этих видов есть свои характерные преимущества и недостатки, хотя аппаратные роутеры принято считать более надежным решением.

Программные маршрутизаторы обладают более гибким функционалом. Набор функций зависит от программы, количество портов для подключения сетей от количества сетевых карт. Программные маршрутизаторы чаще всего используются как максимально гибкое решение за меньшую стоимость. Благодаря программной реализации и мощности центрального процессора, программные маршрутизаторы могут работать вплоть до 7 уровня модели OSI (см. рисунок 1). Как пример, использование антивирусных программ проверяющих проходящий трафик, или блокировка поступающих к клиенту файлов, фильтруя по расширению и размеру.

Сравнение программной и аппаратной реализации маршрутизаторов.

У каждой реализации маршрутизаторов есть свои плюсы и минусы.

Аппаратные маршрутизаторы

Достоинства:

Настройки для удобства могут производятся через web консоль, настройка таким образом значительно ускоряет ввод оборудование в эксплуатацию.

Специально разработанные внутренние протоколы, позволяющие 2 устройствам одного бренда, получить большую производительность сети.

Использование специализированных процессоров, позволяющих аппаратно управлять сетевой маршрутизацией.

Аппаратные устройства имеют все требуемые сертификаты и допуски для предъявления контролирующим органам.

Компоненты устройства подобраны с учётом их полной совместимости.

Большая сфера применения.

Для некоторых устройств пожизненная гарантия.

Низкое энергопотребление.

Недостатки:

Цена устройств может быть очень высокой.

Каждое аппаратное устройство имеет предел маштабируемости, после которого нужно покупать устройство классом выше.

При подключении к устройствам другого бренда теряется часть функционала.

Необходимость иметь аналогичное устройство про запас, так как если оборудование выйдет из строя, производитель сможет прислать оборудование на замену в течении 1-2 недель.

Нет возможности работать выше 3 уровня сетевой модели.

Программные маршрутизаторы

Достоинства:

Цена устройства в несколько раз может быть ниже при сравнении с аппаратным устройством аналогичной производительности.

Производительность системы можно легко увеличить с помощью замены комплектующих (добавление оперативной памяти, более производительный процессор или сетевая карта с большей скоростью).

Благодаря программной реализации доступны все 7 уровней сетевой модели для обработки и фильтрации.

При использовании специализированного ПО, возможность реализации балансировки по входящим интернет-каналам.

Возможность использования средств шифрования и туннелирования, доступных только для компьютеров.

При выходе из строя устройства, его замена проходит с минимальными задержками.

Недостатки:

Для достижения стабильности работы необходима тщательная подборка комплектующих на совместимость.

Трудность при прохождении специальной сертификации из-за используемых комплектующих внутри компьютера.

Из-за специфики ОС, программные маршрутизаторы больше подвержены системным сбоям.

На настройку и запуск оборудования требуется намного больше времени.

Для реализации специфичного протокола, требуются глубокие знания ОС и языков программирования.

Большее энергопотребление.

Выбор маршрутизатора

После оценки достоинств и недостатков обоих видов маршрутизаторов для установки в кабинете информатики было принято решение использовать аппаратную реализацию, так как при ее эксплуатации и настройке возникает меньше серьезных проблем, чем при использовании программного роутера, что лучше подходит для небольшой школьной сети.

Для сравнения было взято три роутера от разных фирм-производителей – D-Link, TP-Link, Asus – приблизительно равной стоимости. Данные о них приведены в таблице 4.

Таблица 4 Сравнение характеристик маршрутизаторов

Название

D-Link DIR-506L

TP-Link TL-WR940N

Asus RT-N53

Пропускная способность

150 Мбит/с

300 Мбит/с

300 Мбит/с

Защита информации

WPA и WPA2, (WPS) PBC/PIN

WEP, WPA, WPA2, 802.1x

64-bit WEP, 128-bit WEP, WPA2-PSK, WPA-PSK, WPA-Enterprise, WPA2-Enterprise, WPS support

Скорость портов

10/100 Мбит/сек

100 Мбит/сек

100 Мбит/сек

Межсетевой экран (FireWall)

нет

есть

есть

NAT, DHCP-сервер

есть

есть

есть

Статическая маршрутизация

нет

есть

нет

Web-интерфейс

На основе браузера

есть

есть

Количество портов

1

4

4

Размеры (ШxВxГ)

102,9x79,8x22,3мм

200x28x140мм

172x145x60мм

Цена

2150р

2160р

2800р

По итогу сравнения был выбран маршрутизатор TP-Link TL-WR940N имеющий подходящие для данной сети характеристики и имеющий сравнительно невысокую стоимость.

Коммутаторы

Устройства канального уровня, которые позволяют соединить несколько физических сегментов локальной сети в одну большую сеть. Коммутация локальных сетей обеспечивает взаимодействие сетевых устройств по выделенной линии без возникновения коллизий, с параллельной передачей нескольких потоков данных.

Принцип работы коммутатора

Коммутаторы локальных сетей обрабатывают кадры на основе алгоритма прозрачного моста IEEE 802.1, который применяется в основном в сетях Ethernet. При включении питания коммутатор начинает изучать расположение рабочих станций всех присоединенных к нему сетей путем анализа МАС-адресов источников входящих кадров. Например, если на порт 1 коммутатора поступает кадр от узла 1, то он запоминает номер порта, на который этот кадр пришел и добавляет эту информацию в таблицу коммутации (рисунок 1.2). Адреса изучаются динамически. Это означает, что, как только будет прочитан новый адрес, то он сразу будет занесен в контентно-адресуемую память. Каждый раз, при занесении адреса в таблицу коммутации, ему присваивается временной штамп. Это позволяет хранить адреса в таблице в течение определенного времени. Каждый раз, когда идет обращение по этому адресу, он получает новый временной штамп. Адреса, по которым не обращались долгое время, из таблицы удаляются.

Рисунок 1.2 Построение таблицы коммутации.

Коммутатор использует таблицу коммутации для пересылки трафика. Когда на один из его портов поступает пакет данных, он извлекает из него информацию о МАС-адресе приемника и ищет этот МАС-адрес в своей таблице коммутации как показано на рисунке 1.2. Если в таблице есть запись, ассоциирующая МАС-адрес приемника с одним из портов коммутатора, за исключением того, на который поступил кадр, то кадр пересылается через этот порт. Если такой ассоциации нет, кадр передается через все порты, за исключением того, на который он поступил. Это называется лавинным распространением. Широковещательная и многоадресная рассылка выполняется также путем лавинного распространения. С этим связана одна из проблем, ограничивающая применение коммутаторов. Наличие коммутаторов в сети не препятствует распространению широковещательных кадров (broadcast) по всем сегментам сети, сохраняя ее прозрачность. В случае если в результате каких-либо программных или аппаратных сбоев протокол верхнего уровня или сам сетевой адаптер начнет работать не правильно, и будет постоянно генерировать широковещательные кадры, коммутатор в этом случае будет передавать кадры во все сегменты, затапливая сеть ошибочным трафиком. Такая ситуация называется широковещательным штормом. Коммутаторы надежно изолируют межсегментный трафик, уменьшая, таким образом трафик отдельных сегментов. Этот процесс называется фильтрацией и выполняется в случаях, когда МАС-адреса источника и приемника принадлежат одному сегменту. Обычно фильтрация повышает скорость отклика сети, ощущаемую пользователем.

Коммутаторы локальных сетей поддерживают два режима работы: полудуплексный режим и дуплексный режим.

Полудуплексный режим - это режим, при котором, только одно устройство может передавать данные в любой момент времени в одном домене коллизий.

Доменом коллизий (collision domain) называется часть сети Ethernet, все узлы которой распознают коллизию независимо от того, в какой части сети эта коллизия возникла.

Дуплексный режим - это режим работы, который обеспечивает одновременную двухстороннюю передачу данных между станцией- отправителем и станцией-получателем на МАС - подуровне. При работе в дуплексном режиме, между сетевыми устройствами повышается количество передаваемой информации. Это связано с тем, что дуплексная передача не вызывает в среде передачи коллизий, не требует составления расписания повторных передач и добавления битов расширения в конец коротких кадров. В результате не только увеличивается время, доступное для передачи данных, но и удваивается полезная полоса пропускания канала, поскольку каждый канал обеспечивает полноскоростную одновременную двустороннюю передачу.

Дуплексный режим работы требует наличия такой дополнительной функции, как управление потоком. Она позволяет принимающему узлу рисунок 1.3 (например, порту сетевого коммутатора) в случае переполнения дать узлу-источнику команду (например, файловому серверу) приостановить передачу кадров на некоторый короткий промежуток времени.

Рисунок 1.3 Последовательность управления потоком IEEE 802.3.

Управление осуществляется между МАС-уровнями с помощью кадра-паузы, который автоматически формируется принимающим МАС уровнем. Если переполнение будет ликвидировано до истечения периода ожидания, то для того, чтобы восстановить передачу, отправляется второй кадр-пауза с нулевым значением времени ожидания.

Дуплексный режим работы и сопутствующее ему управление потоком являются дополнительными режимами для всех МАС-уровней Ethernet независимо от скорости передачи. Кадры-паузы идентифицируются как управляющие МАС-кадры по индивидуальным (зарезервированным) значениям поля длины/типа. Им также присваивается зарезервированное значение адреса приемника, чтобы исключить возможность передачи входящего кадра-паузы протоколам верхних уровней или на другие порты коммутатора.

Методы коммутации

В коммутаторах локальных сетей могут быть реализованы различные методы передачи кадров.

Коммутация с промежуточным хранением (store-and-forward) -коммутатор копирует весь принимаемый кадр в буфер и производит его проверку на наличие ошибок. Если кадр содержит ошибки (не совпадает контрольная сумма, или кадр меньше 64 байт или больше 1518 байт), то он отбрасывается. Если кадр не содержит ошибок, то коммутатор находит адрес приемника в своей таблице коммутации и определяет исходящий интерфейс. Затем, если не определены никакие фильтры, он передает этот кадр приемнику. Этот способ передачи связан с задержками - чем больше размер кадра, тем больше времени требуется на его прием и проверку на наличие ошибок.

Коммутация без буферизации (cut-through) - коммутатор локальной сети копирует во внутренние буферы только адрес приемника (первые 6 байт после префикса) и сразу начинает передавать кадр, не дожидаясь его полного приема. Это режим уменьшает задержку, но проверка на ошибки в нем не выполняется. Существует две формы коммутации без буферизации:

Коммутация с быстрой передачей (fast-forward switching) - эта форма коммутации предлагает низкую задержку за счет того, что кадр начинает передаваться немедленно, как только будет прочитан адрес назначения. Передаваемый кадр может содержать ошибки. В этом случае сетевой адаптер, которому предназначен этот кадр, отбросит его, что вызовет необходимость повторной передачи этого кадра.

Коммутация с исключением фрагментов (fragment-free switching) - коммутатор фильтрует коллизионные кадры, перед их передачей. В правильно работающей сети, коллизия может произойти во время передачи первых 64 байт. Поэтому, все кадры, с длиной больше 64 байт считаются правильными. Этот метод коммутации ждет, пока полученный кадр не будет проверен на предмет коллизии, и только после этого, начнет его передачу. Такой метод коммутации уменьшает количество пакетов передаваемых с ошибками.

Для использования в офисных целях, как правило применяются коммутаторы с коммутацией промежуточного хранения – store-and-forward.

Классификация коммутаторов

Коммутаторы уровня 2 анализируют входящие кадры, принимают решение об их дальнейшей передаче и передают их пунктам назначения на основе МАС-адресов канального уровня модели OSI. Основное преимущество коммутаторов уровня 2 - прозрачность для протоколов верхнего уровня. Поскольку коммутатор функционирует на 2-м уровне, ему нет необходимости анализировать информацию верхних уровней модели OSI.

Коммутация 2-го уровня - аппаратная. Она обладает высокой производительностью, поскольку пакет данных не претерпевает изменений. Передача кадра в коммутаторе может осуществляться специализированным контроллером, называемым Application-Specific Integrated Circuits (ASIC), что переводится как интегральная схема специального назначения. Эта технология, разработанная для коммутаторов, позволяет обеспечивать высокие скорости коммутации с минимальными задержками.

Существуют 2 основные причины использования коммутаторов 2-го уровня – сегментация сети и объединение рабочих групп. Высокая производительность коммутаторов позволяет разработчикам сетей значительно уменьшить количество узлов в физическом сегменте. Деление крупной сети на логические сегменты повышает производительность сети (засчет уменьшения объема передаваемых данных в отдельных сегментах), а также гибкость построения сети, увеличивая степень защиты данных, и облегчает управление сетью.

Несмотря на преимущества коммутации 2-го уровня, она все же имеет некоторые ограничения. Наличие коммутаторов в сети не препятствует распространению широковещательных кадров (broadcast) по всем сегментам сети, сохраняя ее прозрачность. Таким образом, очевидно, что для повышения производительности сети необходима функциональность 3-го уровня OSI модели.

Коммутатор уровня 3 принимает решение о коммутации на основании бóльшего количества информации, чем просто МАС-адрес. Коммутаторы 3-го уровня осуществляют коммутацию и фильтрацию на основе адресов канального (уровень 2) и сетевого (уровень 3) уровней OSI модели. Такие коммутаторы динамически решают, коммутировать (уровень 2) или маршрутизировать (уровень 3) входящий трафик. Коммутаторы 3 уровня выполняет коммутацию в пределах рабочей группы и маршрутизацию между рабочими группами.

Коммутаторы 3-го уровня функционально практически ничем не отличаются от традиционных маршрутизаторов и выполняют те же функции:

• определение оптимальных путей передачи данных на основе логических адресов (адресов сетевого уровня, традиционно IP-адресов)

• управление широковещательным и многоадресным трафиком

• фильтрация трафика на основе информации 3-го уровня

• IP-фрагментация.

Основное отличие между маршрутизаторами и коммутаторами 3-го уровня заключается в том, что в маршрутизаторах общего назначения принятие решения о пересылке пакетов обычно выполняется программным образом, а в коммутаторах обрабатывается специализированными контроллерами ASIC. Это позволяет коммутаторам выполнять маршрутизацию пакетов на скорости канала связи.

Выбор коммутатора для решения поставленных задач

Исходя из количества рабочих мест, коммутатор должен иметь не менее 16 портов. Проведя анализ оборудования на рынке (таблица 1.3). Был выбран коммутатор TP-Link TL-SG3216, как лидер по соотношению цена/производительность.

Таблица 1.3 Сравнительная таблица коммутаторов 2 уровня.

Название

D-Link DES-3200-18/B1A

TP-Link TL-SG3216

HP 1910-16G Switch (JE005A)

Производитель

D-Link

TP-Link

HP

Количество портов

18

16

20

Скорость портов коммутатора

10/100/1000 Мбит/сек

10/100/1000 Мбит/сек

10/100/1000 Мбит/сек

Размер таблицы MAC адресов

8K

8K

8192

Рабочая температура

от 0°C до +40°С

от 0°C до +40°С

от 0°C до +45°С

Размеры (ШxВxГ)

228.5x195x44 мм

440х220х44мм

442x160x432мм

Метод коммутации

store-and-forward

store-and-forward

store-and-forward

Цена

10250р

10300р

12100р

Выбор монтажного оборудования

Шкаф для коммутационного оборудования

Исходя из того, что для оборудования не потребуется отдельное помещение, всё оборудование можно монтировать в настенный шкаф, в качестве которого будет использоваться ШРН 9.650 со стеклянной дверью, высотой 9U и габаритами 499х599х650 мм (риснок 4).

Данный шкаф выбран, так как он уже имеется в кабинете и не имеет смысла приобретать новый.

U - это единица измерения высоты специального оборудования и равна 44,45 мм (или 1,75 дюйма).

Рисунок 4 – Монтажный шкаф ШРН 9.650

Обзор и выбор сетевого кабеля

Для локальных сетей существует три принципиальные схемы соединения: с помощью витой пары, коаксиального или волоконно-оптического кабеля. Для передачи информации так же могут использоваться спутники, лазеры, микроволновое излучение и т.п., но подобное оборудование выходит за область рассмотрения данного дипломного проекта.

Так как сеть проектируется только в пределах одного кабинета, самый оптимальный выбор – это кабель витая пара, поэтому другие варианты в рассмотрение не берутся.

Витая пара

Витая пара в настоящее время является самой распространённой средой передачи и представляет собой пару свитых проводов. Кабель, составленный из нескольких витых пар, как правило, покрыт жёсткой пластиковой оболочкой, предохраняющей его от воздействия внешней среды и механических повреждений. Изобажение витой пары представлена на рисунке 55.

Рисунок 55 Кабель витая пара

В нормальных условиях витая пара поддерживает скорость передачи данных от 10 до 100 Мбит/с. Однако ряд факторов может существенно снизить скорость передачи данных, в частности, потеря данных, перекрёстное соединение и влияние электромагнитного излучения.

Для уменьшения влияния электрических и магнитных полей применяется экранирование (кабель из витых пар покрывается фольгой или оплёткой). Но после экранирования витой пары в значительной степени увеличивается затухание сигнала. Под затуханием сигнала подразумевается его ослабление при передаче из одной точки сети в другую. Экранирование изменяет сопротивление, индуктивность и ёмкость таким образом, что линия становится склонной к потере данных. Подобные потери могут сделать витую пару нежелательной и ненадёжной средой передачи. И экранированная, и неэкранированная витая пара используется для передачи данных на несколько сотен метров.

В соответствии со спецификациями ассоциации электронной и телекоммуникационной промышленности вводится пять стандартных категорий кабеля из витых пар. При определении категорий кабеля используется только неэкранированная витая пара (UTP).

Кабель первой категории используется для передачи голосовых данных. С начала 80-х годов кабель САТ 1 используется в основном в качестве проводки телефонных линий. Кабель первой категории не сертифицирован для передачи данных любого типа и в большинстве случаев не рассматривается как среда для передачи цифровых данных.

Кабель второй категории используется для передачи информации со скоростью не более 4 Мбит/с. Этот тип проводки характерен для сетей устаревшей сетевой топологии, использующих протокол с передачей маркера. Кабель тактируется частотой 1 Мгц.

Кабель третьей категории в основном используется в локальных сетях с устаревшей архитектурой Ethernet 10base-T и сертифицирован для передачи данных со скоростью до 16 Мбит/с. Кабель тактируется частотой 16 МГц.

Кабель четвёртой категории используется в качестве среды соединения сетей с кольцевой архитектурой или архитектурой 10base-T/100base-T. Кабель САТ 4 сертифицирован для передачи данных со скоростью до 16Мбит/с и состоит из четырёх витых пар. Тактируется частотой 20 МГц.

Кабель пятой категории является самой распространённой средой передачи для Ethernet. Кабель поддерживает скорость передачи данных до 100Мбит/с и используется в сетях с архитектурой 100base-T и 10base-T. Кабель тактируется частотой 100 МГц.

Кабель витая пара категории 5е является наилучшим выбором для использования в локальных сетях как большого, так и малого размера, именно поэтому он и будет применяться при реализации проекта.

Выбор информационных розеток

Для данного проекта предусматривается по одной информационной розетке с двумя розеточными модулями, образующими абонентские порты СКС.

Тип розеточных модулей определяется с учетом требований по пропускной способности, конфигурации рабочего места и выбранного способа крепления. Применение двух розеточных модулей категории 5е определяется соображениями универсальности и полностью соответствует требованиям стандарта ISO/IEC 11801. Розеточный модуль устанавливается около каждой рабочей станции на высоте 50 см от пола.

Для монтажа кабеля на рабочих местах выбраны стандартные розетки с разъёмом RJ-45 категории 5е (Рисунок 56).

Рисунок 56543 розетки с разъёмом RJ-45 категории 5е

Обзор кабельных соединений и компоновки Ethernet

Существует четыре основные схемы кабельных соединений, используемых в среде Ethernet: толстая Ethernet, тонкая Ethernet, Ethernet на витой паре, волоконно-оптическая Ethernet. Различиями в их спецификации, компоновки и количестве узлов обусловлена разница производительности конкретных систем Ethernet.

Скорость передачи для всех типов Ethernet одинакова и составляет 10 Мбит/с. Схемой соединения для каждого типа может быть конфигурация либо в виде шины, либо в виде звезды.

Толстая Ethernet – 10Base5

передача данных – 10 Мбит/с, однополосная;

схема соединений – в виде шины;

тип кабеля, используемого в среде толстой Ethernet, - как правило, широкий коаксиальный (диаметром 4 дюйма);

максимальная длина сегмента - 500 м;

сегменты кабеля толстой Ethernet должны иметь 50-омную оконечную нагрузку;

для удлинения сегмента можно использовать повторители и другие устройства, также как кабельные концентраторы;

рабочие станции и сетевые устройства подключаются к сети через внешние трансиверы, или MAU;

для подключения трансивера к кабельной среде используется разъём типа отвод-вампир;

к сегменту толстой Ethernet можно подключить до 100 рабочих станций или устройств LAN;

система кабельных соединений толстой Ethernet обеспечивает более надёжную защиту от электрических помех.

Тонкая Ethernet

передача данных – 10 Мбит/с, однополосная;

схема соединений – в виде шины;

тип кабеля, чаще всего используемый в этой среде, - RG58A;

максимальная длина сегмента – 185 м;

сегменты кабеля тонкой Ethernet должны иметь 50-омную оконечную нагрузку;

для удлинения сегмента можно использовать повторители и другие устройства, также как кабельные концентраторы;

рабочие станции и сетевые устройства подключаются к сети через внешние трансиверы, или MAU. Они могут быть внешними или внутренними по отношению к сетевым платам;

для подключения трансивера к кабельной среде используется адаптер типа BNC-T;

к одному сегменту тонкой Ethernet посредством трансиверов может подключаться не более 30 рабочих станций или сетевых устройств.

Ethernet на витой паре – 10Base-T

передача данных – 10 Мбит/с, однополосная;

схема соединений – в виде звезды;

тип кабеля, чаще всего используемый в этой среде, - неэкранированная витая пара, уровни 3, 4 и 5;

центральные кабельные концентраторы служат для подключения отдельных кабелей – отводов 10Base-T к рабочим станциям и устройствам локальной сети;

максимальная длина сегмента на один UTP кабель-отвод Ethernet – 100 м. Эта величина может меняться в зависимости от изготовителя конкретного кабельного концентратора и сетевого адаптера;

сетевые платы Ethernet, основанные на UTP, обычно поставляются с внутренними UTP-трансиверами. В случае отсутствия внутренних UTP-трансиверов можно подобрать соответствующее внешнее устройство, с помощью которого стандартные платы для толстой и тонкой Ethernet смогут работать в схеме UTP;

в качестве разъёма сетевой платы обычно используется модульное гнездо RJ45 с положительными и отрицательными парами приёма и передачи, основанными на 8-игольчатых соединениях;

кабельные соединения UTP легко монтировать и обслуживать, их относительная стоимость невысока. Они восприимчивы к электрическим помехам и должны монтироваться в соответствии со спецификацией.

Волоконно-оптическая Ethernet 10Base-F

передача данных – 10 Мбит/с, однополосная;

схема соединений – в виде звезды;

обычно используется 50- или 100-микронный волоконно-оптический кабель;

для подключения отдельных кабелей-отводов 10Base-F к рабочим станциям и устройствам локальной сети используются центральные волоконно-оптические кабельные концентраторы или многопортовые повторители;

максимальная длина сегмента на один волоконно-оптический кабель-отвод Ethernet - до 2100 м;

волоконно-оптический кабель обеспечивает максимальную защиту от помех со стороны источников электроэнергии.

Кабельные разъёмы Ethernet.

В зависимости от типа Ethernet, для соединения с сетевыми платами, трансиверами, повторителями и концентраторами используются различные типы кабельных разъёмов.

Все устройства, предназначенные для работы с толстой Ethernet, снабжены 15-игольчатым AUI- или DIX-разъёмом. Рабочая станция или другое устройство подключается к трансиверу Ethernet посредством кабеля интерфейса подключения устройства, соединяющего DIX-разъём на сетевой плате Ethernet с DIX-разъёмом на трансивере. Трансивер, в свою очередь, подключается к коаксиальному кабелю Ethernet либо с помощью разъёмов, либо с помощью отвода-вампира, который вгрызается непосредственно в кабель. Для соединения двух коаксиальных кабелей используется целый ряд разъёмов коаксиальных кабелей.

Для подключения кабелей Ethernet непосредственно к разъёму на рабочей станции или другому устройству в среде тонкой Ethernet служит Т-образный разъём BNC. Надо отметить, что разъём часто является источником различных проблем с тем или иным кабельным сегментом в среде тонкой Ethernet. Чтобы избежать их, необходимо проверить, правильно ли он подсоединён к коаксиальному кабелю.

Ethernet 10 Base-T используется для соединений между сетевыми платами 10Base-T и интеллектуальными кабельными концентраторами, базирующимися на UTP Ethernet, стандартный разъём телефонного типа RJ45.

На обычном кабельном концентраторе довольно часто встречаются различные разъёмы типа Ethernet для организации соединений между разнотипными сетями. Например, на задней панели обычного кабельного концентратора 10 Base-T очень часто можно увидеть DIX-разъём для подключения AUI толстой Ethernet, а также BNC-разъём для подключения стандартной толстой Ethernet. Это позволяет интегрировать системы различных типов Ethernet с целью организации их совместной работы. На одной плате Ethernet очень часто размещаются разъёмы BNC, RJ45 и AUI.

Рисунок 558. Основные разъёмы для различных сред Ethernet

На рисунке 558 показаны основные виды разъёмов, встречающихся в системах различных типов Ethernet, в том числе DIX-разъём толстой Ethernet, разъём тонкой Ethernet и разъём RJ45 10Base-T, для UTP.

ПРОЕКТНАЯ ЧАСТЬ

Разработка модели сети

При проектировании сети в первую очередь разрабатывается наглядная модель сети с привязкой к имеющимся планам и инженерным конструкциям. Данное действие позволяет:

Определиться в каком месте будет установлено коммуникационное оборудование.

Выбрать с учётом имеющихся коммуникаций наименьшее расстояние для прокладки коммуникационных кабелей.

Учитывая масштаб плана, позволяет рассчитать приблизительную длину каждого кабельного сегмента.

Для разработки модели выбран метод имитационного моделирования, поскольку он в большей степени соответствует предъявляемым требованиям по адекватности и сложности.

В качестве программы для разработки имитационной модели сети выбрана программа Microsoft Visio.

На рисунке 1 показана схема второго этажа школы, где расположен кабинет информатики под номером 14.

Рисунок 1 План-схема 2 этажа

Построение локальной сети с привязкой к плану-схеме здания

Виртуальная сеть кабинета изолирована от остальных компьютеров в школе. Все кабели укладываются в кабель-каналы и прокладываются под потолком. Для каждого рабочего места устанавливается компьютерная розетка, к ней по стене в кабель-канале подводится сетевой кабель. Серверная комната для оборудования не предусматривается, так как сеть небольшая и коммуникационный шкаф установлен непосредственно в кабинете. В шкаф установлены: коммутатор, маршрутизатор и блок бесперебойного питания. В кабинете расположено семь ноутбуков и четыре компьютера, один из которых является файл-сервером. Максимальная дальность сегментов ЛВС до коммутационного оборудования не превышает 70 метров, что соответствует требованию стандарта EIA/TIA-568-В передачи данных на скорости 100 Мбит/с.

Рисунок 2 Структурная схема коммуникаций кабинета информатики.

Расчет длины кабеля

На каждом рабочем месте устанавливается внешняя компьютерная розетка. Всего устанавливается 11 розеток. К каждой розетке от шкафа прокладывается кабель «неэкранированная витая пара» (UTP).

Для подключения рабочих станций к розеткам используются коммутационные шнуры длиной один метр. Количество данных шнуров равно 11.

Прокладка кабеля выполняется по периметру помещения в кабель-каналах. Кабель прокладывается на высоте 0,5 м от пола. Коммутационный шкаф устанавливается непосредственно в кабинете (рисунок 2) на высоте 1,5м от пола.

Общая длина кабеля будет равна сумме длин кабеля от одной розетки до другой. Расчет длины кабеля представлен в таблице…….

← Предыдущая
Страница 1
Следующая →

Дипломная работа. Анализ существующих решений для построения сети. Маршрутизаторы. Особенности современных маршрутизаторов. Принцип работы коммутатора. Методы коммутации. Классификация коммутаторов. Выбор коммутатора для решения поставленных задач. Выбор монтажного оборудования. Выбор информационных розеток. Обзор кабельных соединений и компоновки Ethernet

У нас самая большая информационная база в рунете, поэтому Вы всегда можете найти походите запросы

Искать ещё по теме...

Похожие материалы:

Доклад принцип защиты трудовых прав

Задание ЕГЭ. Речь. Выразительность русской речи

Словарь. Тропы. Развёрнутая метафора. Фигуры речи. Эпифора. Вопросно-ответная форма изложения. Инверсия. Сравнительный оборот.

Дизайн-проект фирменного стиля центра творческого развития «Город солнца»

Профилактика зубочелюстных аномалий

Ответы на тесты Профилактика зубочелюстных аномалий. Детская стоматология. Лечение у ортодонта.

Теория проблемного обучения

Контрольная работа по учебной дисциплине «Педагогика». Что такое обучение. Функции обучения, история развития, признаки проблемного обучения. Методы проблемного обучения Проблемное обучение на современном этапе. Учебная проблема и проблемная ситуация.

Сохранить?

Пропустить...

Введите код

Ok