Дыхание, его основные этапы. Механизм внешнего дыхания. Биомеханизм вдоха и выдоха — Физиология | iFREEstore

Дыхание, его основные этапы. Механизм внешнего дыхания. Биомеханизм вдоха и выдоха

Дыхание - это совокупность процессов, благодаря которым организм потребляет кислород из окружающей среды и выделяет углекислый газ.

Этапы дыхания:

1. Внешнее дыхание /вентиляция легких/ - обмен газов между атмосферным воздухом и альвеолярным, легочная вентиляция.

2. Диффузия газов в легких - обмен газов между альвеолярным воздухом и кровью в капиллярах легких.

3. Транспорт газов кровью - этот этап осуществляется за счет деятельности сердечно-сосудистой системы, в результате чего кислород доставляется к тканям, а углекислый газ - к легким.

4. Диффузия газов в тканях - обмен газов между кровью и тканями.

5. Тканевое дыхание - окислительно-восстановительные реакции, протекающие с потреблением кислорода и выделением углекислого газа.

Первые 4 этапа изучает физиология, последний, 5-ый - биохимия.

Обеспечение тканей О2 и удаление из организма СО2 зависит от четырех процессов:

1.Вентиляция легких

2.Диффузия газов в альвеолы и ткани из крови и в кровь.

3.Перфузия легких кровью /интенсивность кровотока в легких/.

4.Перфузия тканей кровью

Отрицательное давление в плевральной щели играет важную роль в процессах вдоха и выдоха. Отрицательное давление в плевральной щели - это величина, на которую давление в плевральной щели ниже атмосферного; при спокойном дыхании оно равно —4 мм рт. ст. в конце выдоха и -8 мм рт. ст. в конце вдоха. Таким образом, реальное давление в плевральной щели составляет величину порядка 752—756 мм рт. ст. и зависит от фазы дыхательного цикла. Отрицательное давление уменьшается в направлении сверху вниз примерно на 0,2 мм рт. ст. на каждый сантиметр, так как верхние отделы легких растянуты сильнее нижних, которые несколько сжаты под действием собственного веса.

Значение отрицательного давления в плевральной щели заключается в том, что оно 1) обеспечивает куполообразное положение диафрагмы, так как давление в грудной полости ниже атмосферного, а в брюшной полости оно несколько выше атмосферного за счет тонуса мышц стенки живота; 2) обеспечивает смещение диафрагмы вниз при сокращении ее мышцы во время вдоха; 3) способствует также притоку крови по венам к сердцу; 4) способствует сжатию грудной клетки при выдохе (см. п. 10.2 ниже).

Происхождение отрицательного давления. В процессе развития организма рост легких отстает от роста грудной клетки. Поскольку на легкое атмосферный воздух действует только с одной стороны - через воздухоносные пути, оно растянуто и прижато к внутренней стороне грудной клетки. Вследствие растянутого состояния легких возникает сила, стремящаяся вызвать спадение легких. Эта сила называется эластической тягой легких (ЭТЛ) О том, что легкие находятся в растянутом состоянии, свидетельствует факт их спадения при пневмотораксе (греч. рпе-ита - воздух, torax - грудь) - патологическом состоянии, возникающем при нарушении герметичности плевральной щели, в результате чего ее заполняет атмосферный воздух, оказываясь между висцеральным и париетальным листками плевры. Эластичность - способность ткани возвращаться в исходное состояние после прекращения действия растягивающей силы. Так как плевральная щель в норме не сообщается с атмосферой, давление в ней ниже атмосферного на величину ЭТЛ: при спокойном вдохе на —8мм рт. ст., при спокойном выдохе на —4ммрт. ст. Фильтрующаяся в плевральную щель жидкость всасывается обратно висцеральной и париетальной плеврами в лимфатическую систему, что является важным фактором в поддержании отрицательного давления в плевральной щели.

Составными элементами ЭТЛ являются: 1) эластиновые и кол-лагеновые волокна; 2) гладкие мышцы сосудов легких к, главное, 3) поверхностное натяжение пленки жидкости, покрывающей внутреннюю поверхность альвеол. Силы поверхностного натяжения составляют 2/3 величины ЭТЛ, причем величина поверхностного натяжения альвеолярной пленки существенно уменьшается в присутствии сурфактанта.

Таким образом: Отрицательное давление в плевральной полости. Если измерить давление в плевральной полости во время дыхательной паузы, то можно обнаружить, что оно ниже атмосферного давления на 3—4 мм рт.ст., т.е. отрицательное. Это вызвано эластической тягой легких к корню, создающей некоторое разрежение в плевральной полости.

Во время вдоха давление в плевральной полости еще больше уменьшается за счет увеличения объема грудной клетки, а значит, отрицательное давление возрастает. Величина отрицательного давления в плевральной полости равна: к концу максимального выдоха - 1-2 мм рт. ст., к концу спокойного выдоха - 2-3 мм рт. ст., к концу спокойного вдоха -5-7 мм рт. ст., к концу максимального вдоха - 15-20 мм рт. ст.

Механизм вдоха. Вдох происходит с помощью трех одновременно протекающих процессов: 1) расширения грудной клетки; 2) увеличения объема легких; 3) поступления воздуха в легкие. У здоровых молодых мужчин разница между окружностью грудной клетки в положении вдоха и выдоха составляет 7—10 см, а у женщин — 5—8 см.

Расширение грудной клетки при вдохе обеспечивается сокращением инспираторных мышц - диафрагмы, наружных межреберных и межхрящевых. Грудная клетка при вдохе расширяется в трех направлениях.

В вертикальном направлении грудная клетка расширяется в основном за счет сокращения диафрагмы и смещения ее сухожильного центра вниз, поскольку точки прикрепления периферических ее частей к внутренней поверхности грудной клетки по всему периметру находятся ниже купола диафрагмы. При спокойном вдохе купол диафрагмы опускается примерно на 2 см, при глубоком вдохе — до 10 см. Диафрагмальная мышца — главная дыхательная мышца, в норме вентиляция легких на 2/3 осуществляется за счет ее движений. Диафрагма принимает участие в обеспечении кашлевой реакции, рвоты, натуживания, икоты, в родовых схватках.

• Во фронтальном направлении грудная клетка расширяется благодаря некоторому разворачиванию ребер в стороны при движении их вверх.

В сагиттальном направлении грудная клетка расширяется вследствие удаления концов ребер от грудины вперед при поднятии их.

Расширению грудной клетки способствуют также и силы ее упругости, так как грудная клетка в процессе выдоха сильно сжимается с помощью ЭТЛ, вследствие чего она стремится расшириться. Поэтому энергия при вдохе расходуется только на частичное преодоле ние ЭТЛ и брюшной стенки, а грудная клетка поднимается сама и расширяется при этом примерно до 60 % жизненной емкости. Спонтанно расширяющаяся грудная клетка способствует также преодолению ЭТЛ. Вместе с расширением грудной клетки расширяются и легкие. При расширении грудной клетки движение нижних ребер оказывает большее влияние на ее объем и вместе с движением диафрагмы вниз обеспечивает лучшую вентиляцию нижних долей легких, чем верхушек легких.

Увеличение объема легких при вдохе объясняют по-разному: легкие расширяются либо вследствие увеличения отрицательного давления в плевральной щели, либо — силы адгезии (слипания париетального и висцерального листков плевры), либо — того и другого.

По нашему мнению, легкие расширяются под действием атмосферного давления воздуха, направленного на них только с одной стороны (через воздухоносные пути); вспомогательную роль выполняют силы сцепления (адгезии) висцерального и париетального листков плевры. Сила, с которой легкие прижаты к внутренней поверхности грудной клетки атмосферным воздухом, равна Ратм.

С целью улучшения восприятия материала изменением величины давления в самих легких (на вдохе —2 мм рт. ст., на выдохе +2 мм рт. ст.) можно пренебречь.

Снаружи на грудную клетку действует Ратм, но на легкие оно не передается, поэтому на них действует только одностороннее атмосферное давление через воздухоносные пути. Поскольку снаружи на грудную клетку действует Ратм, а изнутри — Ратм-Рэтл, при вдохе необходимо преодолеть силу ЭТЛ. Поскольку при вдохе ЭТЛ увеличивается вследствие расширения (растяжения)

легких, то увеличивается и отрицательное давление в плевральной щели. А это означает, что увеличение отрицательного давления в плевральной щели является не причиной, а следствием расширения легких.

Расширению легких при вдохе способствует сила сцепления (адгезии) между висцеральным и париетальным листком плевры. Но эта сила крайне мала по сравнению с атмосферным давлением, действующим на легкие через воздухоносные пути. Об этом свидетельствует тот факт, что легкие при открытом пневмотораксе спадаются, когда воздух поступает в плевральную щель и на легкие с обеих сторон (и со стороны альвеол, и со стороны плевральной щели) действует одинаковое атмосферное давление (см. рис. 10.2). Поскольку легкие в условиях пневмоторакса отрываются от внутренней поверхности грудной клетки, это означает, что ЭТЛ превосходит силу сцепления между париетальным и висцеральным листком плевры. Поэтому сила сцепления не может обеспечить растяжение легких при вдохе, так как она меньше ЭТЛ, действующей в противоположном направлении.

Все изложенное свидетельствует о том, что легкие следуют за расширяющейся грудной клеткой при вдохе, в основном вследствие действия на них атмосферного давления только с одной стороны - через воздухоносные пути. Оно действует постоянно - и на вдохе, и на выдохе. При расширении грудной клетки и легких давление в последних уменьшается примерно на 2 мм рт. ст., но такое уменьшение нельзя считать значительным, поскольку на легкие продолжает действовать давление, равное Ратм - 2 мм рт. ст. Это давление и прижимает легкие к внутренней поверхности грудной клетки - именно поэтому легкие следуют за расширяющейся грудной клеткой при вдохе.

Воздух поступает в легкие при их расширении вследствие некоторого (на 2 мм рт. ст.) падения давления в них. Этого незначительного градиента давления достаточно, поскольку воздухоносные пути имеют большой просвет и не оказывают существенного сопротивления движению воздуха. Кроме того, увеличение ЭТЛ при вдохе обеспечивает дополнительное расширение бронхов. Вслед за вдохом плавно начинается выдох, который при спокойном дыхании осуществляется без непосредственной затраты энергии.

Механизм выдоха. Выдох осуществляется вследствие одновременно происходящих трех процессов: 1) сужения грудной клетки; 2) уменьшения объема легких; 3) изгнания воздуха из легких. Экспираторными мышцами являются внутренние межреберные мышцы и мышцы брюшной стенки.

Сужение грудной клетки при выдохе обеспечивается ЭТЛ и эластической тягой брюшной стенки. Это достигается следующим образом. При вдохе растягиваются легкие, вследствие чего возрастает ЭТЛ. Кроме того, диафрагма опускается вниз и оттесняет органы брюшной полости, растягивая при этом саму брюшную стенку, вследствие чего увеличивается ее эластическая тяга. Как только прекращается поступление импульсов к мышцам вдоха по диафраг-мальным и межреберным нервам, прекращается возбуждение мышц вдоха, вследствие чего они расслабляются. После этого грудная клетка суживается под влиянием ЭТЛ и постоянно имеющегося тонуса мышц брюшной стенки — при этом органы брюшной полости оказывают давление на диафрагму и поднимают

ее. Поднятию купола диафрагмы способствует также ЭТЛ. Сужению грудной клетки (опусканию ребер) способствует также ее масса, но главную роль играет ЭТЛ.

Механизм передачи ЭТЛ на грудную клетку и сужения ее. Это осуществляется за счет уменьшения давления атмосферного воздуха на грудную клетку изнутри через воздухоносные пути и легкие (см. рис. 10.2). Уменьшение давления равно силе ЭТЛ, так как с внутренней стороны реальное давление, оказываемое воздухом на грудную клетку, равно Pатм-Рэтл, а снаружи на грудную клетку действует Ратм Этот перепад давлений действует и на вдохе, и на выдохе, но вдоху он препятствует (преодоление ЭТЛ), а выдоху, наоборот, способствует. ЭТЛ сжимает грудную клетку, как пружину.

Сила сцепления (адгезии) висцерального и париетального листков плевры мала и не добавляется к ЭТЛ, и не вычитается из нее, а только способствует удержанию листков плевры друг с другом.

Легкие сжимаются при выдохе под действием их собственной эластической тяги, которая обеспечивает сужение и грудной клетки.

Воздух изгоняется из легких вследствие повышения давления в них (при спокойном выдохе - на 2 мм рт. ст.), так как объем легких при выдохе уменьшается, что ведет к сжатию воздуха и выдавливанию его из легких.

Дополнительно: При вдохе преодолевается ряд сил:

1) эластическое сопротивление грудной клетки,

2) эластическое сопротивление внутренних органов, оказывающих давление на диафрагму,

3) эластическое сопротивление легких,

4) вязко-динамическое сопротивление всех перечисленных выше тканей,

5) аэродинамическое сопротивление дыхательных путей,

6) силу тяжести грудной клетки,

7) силы инерции перемещаемых масс/органов/

Биомеханика спокойного вдоха и выдоха…

Биомеханика спокойного вдоха

В развитии спокойного вдоха играют роль: сокращение диафрагмы и сокращение наружных косых межреберных и межхрящевых мышц.

Под влиянием нервного сигнала диафрагма /наиболее сильная мышца вдоха/ сокращается, ее мышцы расположены радиально по отношению к сухожильному центру, поэтому купол диафрагмы уплощается на 1,5-2,0 см, при глубоком дыхании -на 10 см, растет давление в брюшной полости. Размер грудной клетки увеличивается в вертикальном размере.

Под влиянием нервного сигнала сокращаются наружные косые межреберные и межхрящевые мышцы. У мышечного волокна место прикрепления его к нижележащему ребру дальше от позвоночника, чем место его прикрепления к вышележащему ребру, поэтому момент силы нижележащего ребра при сокращении этой мышцы всегда больше, чем таковой у вышележащего ребра. Это приводит к тому, что ребра как бы приподнимаются, а грудные хрящевые концы как бы слегка скручиваются. Так как при выдохе грудные концы ребер располагаются ниже, чем позвоночные /дуга под углом/, то сокращение наружных межреберных мышц приводит их в более горизонтальное положение, окружность грудной клетки увеличивается, грудина приподнимается и выходит вперед, межреберное расстояние увеличивается. Грудная клетка не только приподнимается, но и увеличивает свои саггитальный и фронтальный размеры. За счет сокращения диафрагмы, наружных косых межреберных и межхрящевых мышц увеличивается объем грудной клетки. Движение диафрагмы обуславливает примерно 70-80% вентиляции легких.

Грудная клетка выстлана изнутри париетальным листком плевры, с которым крепко сращена. Легкое покрыто висцеральным листком плевры, с которым также крепко сращено. В нормальных условиях листки плевры плотно прилегают друг к другу и могут скользить /благодаря выделению слизи/ относительно друг друга. Силы сцепления между ними велики и листки плевры невозможно разъединить.

При вдохе париетальный листок плевры следует за расширяющейся грудной клеткой, тянет за собой висцеральный листок и тот растягивает ткань легкого, что приводит к увеличению их объема. В этих условиях воздух, находящийся в легких /альвеолах/ распределяется в новом, большем объеме, это приводит к падению давления в легких. Возникает разница давлений между окружающей средой и легкими /трансреспираторное давление/.

Трансреспираторное давление(Ртрр) - это разница между давлением в альвеолах (Ральв) и внешним /атмосферным/ давлением (Рвнеш). Ртрр= Ральв. - Рвнешн,. Равняется на вдохе - 4 мм рт. ст. Эта разница и заставляет войти порцию воздуха через воздухоносные пути в легкие. Это и есть вдох.

Биомеханика спокойного выдоха

Спокойных выдох осуществляется пассивно, т.е. не происходит сокращения мышц, а грудная клетка спадается за счет сил, которые возникли при вдохе.

Причины, вызывающие выдох:

1. Тяжесть грудной клетки. Поднятые ребра опускаются под действием тяжести.

2. Органы брюшной полости, оттесненные диафрагмой вниз при вдохе, поднимают диафрагму.

3. Эластичность грудной клетки и легких. За счет них грудная клетка и легкие занимают исходное положение

Трансреспираторное давление в конце выдоха составляет =+ 4 мм.рт.ст.

← Предыдущая
Страница 1
Следующая →

Файл

ВОПРОСЫ К ЭКЗАМЕНАМ.doc

ВОПРОСЫ К ЭКЗАМЕНАМ.doc
Размер: 5.1 Мб

.

Пожаловаться на материал

Общая физиология. Физиологические основы поведения. Высшая нервная деятельность. Физиологические основы психических функций человека. Физиология целенаправленной деятельности. Приспособление организма к различным условиям существования. Физиологическая кибернетика. Частная физиология. Кровь, лимфа, тканевая жидкость. Кровообращение. Дыхание. Пищеварение. Обмен веществ и энергии. Питание. Центральная нервная система. Методы исследования физиологических функций. Физиология и биофизика возбудимых тканей.

У нас самая большая информационная база в рунете, поэтому Вы всегда можете найти походите запросы

Искать ещё по теме...

Эта тема принадлежит разделу:

Физиология

Общая физиология. Физиологические основы поведения. Высшая нервная деятельность. Физиологические основы психических функций человека. Физиология целенаправленной деятельности. Приспособление организма к различным условиям существования. Физиологическая кибернетика. Частная физиология. Кровь, лимфа, тканевая жидкость. Кровообращение. Дыхание. Пищеварение. Обмен веществ и энергии. Питание. Центральная нервная система. Методы исследования физиологических функций. Физиология и биофизика возбудимых тканей.

К данному материалу относятся разделы:

Роль физиологии в диалектико-материалистическом понимании сущности жизни. Связь физиологии с другими науками

Основные этапы развития физиологии

Аналитический и системный подход к изучению функций организма

Роль И.М.Сеченова и И.П.Павлова в создании материалистических основ физиологии

Защитные системы организма, обеспечивающие целостность его клеток и тканей

Общие свойства возбудимых тканей

Современные представления о строении и функции мембран. Активный и пассивный транспорт веществ через мембраны

Электрические явления в возбудимых тканях. История их открытия

Потенциал действия и его фазы. Изменение проницаемости калиевых, натриевых и кальциевых каналов в процессе формирования потенциала действия

Мембранный потенциал, его происхождение

Соотношение фаз возбудимости с фазами потенциала действия и одиночного сокращения

Законы раздражения возбудимых тканей

Действие постоянного тока на живые ткани

Физиологические свойства скелетной мышцы

Виды и режимы сокращения скелетных мышц. Одиночное мышечное сокращение и его фазы

Тетанус и его виды. Оптимум и пессимум раздражения

Лабильность, парабиоз и его фазы (Н.Е.Введенский)

Сила и работа мышц. Динамометрия. Эргография. Закон средних нагрузок

Распространение возбуждения по безмякотным нервным волокнам

Строение, классификация и функциональные свойства синапсов. Особенности передачи возбуждения в них

Функциональные свойства железистых клеток

Основные формы интеграции и регуляции физиологических функций (механическая, гуморальная, нервная)

Системная организация функций. И.П.Павлов - основоположник системного подхода в понимании функций организма

Учение П.К.Анохина о функциональных системах и саморегуляции функций. Узловые механизмы функциональной системы

Понятие о гомеостазе и гомеокинезе. Саморегуляторные принципы поддержания постоянства внутренней среды организма

Рефлекторный принцип регуляции (Р.Декарт, Г.Прохазка), его развитие в трудах И.М.Сеченова, И.П.Павлова, П.К.Анохина

Основные принципы и особенности распространения возбуждения в ЦНС

Торможение в ЦНС (И.М.Сеченов), его виды и роль. Современное представление о механизмах центрального торможения

Принципы координационной деятельности центральной нервной системы. Общие принципы координационной деятельности ЦНС

Автономная и соматическая нервная системы, их анатомо-фуцнкциональные различия

Сравнительная характеристика симпатического и парасимпатического отделов вегетативной нервной системы

Врожденная форма поведения (безусловные рефлексы и инстинкты), их значение для приспособительной деятельности

Условный рефлекс как форма приспособления животных и человека к изменяющимся условиям существования. Закономерности образования и проявления условных рефлексов; классификация условных рефлексов

Физиологические механизмы образования рефлексов. Их структурно-функциональная основа. Развитие представлений И.П.Павлова о механизмах формирования временных связей

Явление торможения в ВНД. Виды торможения. Современное представление о механизмах торможения

Аналитико-синтетическая деятельность коры больших полушарий

Архитектура целостного поведенческого акта с точки зрения теории функциональной системы П.К.Анохина

Мотивации. Классификация мотиваций, механизм их возникновения

Память, ее значение в формировании целостных приспособительных реакций

Учение И.П.Павлова о типах ВНД, их классификация и характеристика

Биологическая роль эмоций. Теории эмоций. Вегетативные и соматические компоненты эмоций

Физиологические механизмы сна. Фазы сна. Теории сна

Учение И.П.Павлова о I и II сигнальных системах

Роль эмоций в целенаправленной деятельности человека. Эмоциональное напряжение (эмоциональный стресс) и его роль в формировании психосоматических заболеваний организма

Роль социальных и биологических мотиваций в формировании целенаправленной деятельности человека

Особенности изменения вегетативных и соматических функций в организме, связанных с физическим трудом и спортивной деятельностью. Физическая тренировка, ее влияние на работоспособность человека

Особенности трудовой деятельности человека в условиях современного производства. Физиологическая характеристика труда с нервно-эмоциональным и умственным напряжением

Адаптация организма к физическим, биологическим и социальным факторам. Виды адаптации. Особенности адаптации человека к действию экстремальных факторов

Физиологическая кибернетика. Основные задачи моделирования физиологических функций. Кибернетическое изучение физиологических функций

Понятие о крови ее свойствах и функциях

Электролитный состав плазмы крови. Осмотическое давление крови. Функциональная система, обеспечивающая постоянство осмотического давления крови

Функциональная система, поддерживающая постоянство кислотно-щелочного равновесия

Характеристика форменных элементов крови (эритроциты, лейкоциты, тромбоциты), их роль в организме

Гуморальная и нервная регуляция эритро- и лейкопоэза

Понятие о гемостазе. Процесс свертывания крови и его фазы. Факторы, ускоряющие и замедляющие свертывание крови

Группы крови. Резус-фактор. Переливание крови

Тканевая жидкость, ликвор, лимфа, их состав, количество. Функциональное значение

Значение кровообращения для организма. Кровообращение как компонент различных функциональных систем, определяющих гомеостаз

Сердце, его гемодинамическая функция. Изменение давления и объема крови в полостях сердца в различные фазы кардиоцикла. Систолический и минутный объем крови

Физиологические свойства и особенности сердечной мышечной ткани. Современное представление о субстрате, природе и градиенте автоматии сердца

Тоны сердца и их происхождение

Саморегуляция деятельности сердца. Закон сердца (Старлинг Э.Х.) и современные дополнения к нему

Гуморальная регуляция деятельности сердца

Рефлекторная регуляция деятельности сердца. Характеристика влияния парасимпатических и симпатических нервных волокон и их медиаторов на деятельность сердца. Рефлексогенные поля и их значение в регуляции деятельности сердца

Кровяное давление, факторы, обусловливающие величину артериального и венозного кровяного давления

Артериальный и венный пульс, их происхождение. Анализ сфигмограммы и флебограммы

Капиллярный кровоток и его особенности. Микроциркуляция и ее роль в механизме обмена жидкости и различных веществ между кровью и тканями

Лимфатическая система. Лимфообразование, его механизмы. Функция лимфы и особенности регуляции лимфообразования и лимфотока

Функциональные особенности структуры, функции и регуляции сосудов легких, сердца и других органов

Рефлекторная регуляция тонуса сосудов. Сосудодвигательный центр, его эфферентные влияния. Афферентные влияния на сосудодвигательный центр

Гуморальные влияния на сосудистый тонус

Кровяное давление - как одна из физиологических констант организма. Анализ периферических и центральных компонентов функциональной системы саморегуляции кровяного давления

Дыхание, его основные этапы. Механизм внешнего дыхания. Биомеханизм вдоха и выдоха

Газообмен в легких. Парциальное давление газов (О2, СО2) в альвеолярном воздухе и напряжение газов в крови

Транспорт кислорода кровью. Кривая диссоциации оксигемоглобина, ее характеристика. Кислородная емкость крови

Дыхательный центр (Н.А.Миславский). Современное представление о его структуре и локализации. Автоматия дыхательного центра

Рефлекторная саморегуляция дыхания. Механизм смены дыхательных фаз

Гуморальная регуляция дыхания. Роль углекислоты. Механизм первого вдоха новорожденного ребенка

Дыхание в условиях повышенного и пониженного барометрического давления и при изменении газовой среды

Функциональная система, обеспечивающая постоянство газовой константы крови. Анализ ее центральных и периферических компонентов

Пищевая мотивация. Физиологические основы голода и насыщения

Пищеварение, его значение. Функции пищеварительного тракта. Типы пищеварения в зависимости от происхождения и локализации гидролиза

Принципы регуляции деятельности пищеварительной системы. Роль рефлекторных, гуморальных и местных механизмов регуляции. Гормоны желудочно-кишечного тракта, их классификация

Пищеварение в полости рта. Саморегуляция жевательного акта. Состав и физиологическая роль слюны. Слюноотделение, его регуляция

Пищеварение в желудке. Состав и свойства желудочного сока. Регуляция желудочной секреции. Фазы отделения желудочного сока

Виды сокращения желудка. Нейрогуморальная регуляция движений желудка

Пищеварение в 12-перстной кишке. Внешнесекреторная деятельность поджелудочной железы. Состав и свойства сока поджелудочной железы. Регуляция и приспособительный характер панкреатической секреции к видам пищи и пищевым рационам

Роль печени в пищеварении. Регуляция образования желчи, выделения ее в 12-перстную кишку

Состав и свойства кишечного сока. Регуляция секреции кишечного сока

Полостной и мембранный гидролиз пищевых веществ в различных отделах тонкой кишки. Моторная деятельность тонкой кишки и ее регуляция

Особенности пищеварения в толстой кишке

Всасывание веществ в различных отделах пищеварительного тракта. Виды и механизм всасывания веществ через биологические мембраны

Пластическая и энергетическая роль углеводов, жиров и белков…

Основной обмен, значение его определения для клиники

Энергетический баланс организма. Рабочий обмен. Энергетические затраты организма при различных видах труда

Физиологические нормы питания в зависимости от возраста, вида труда и состояния организма

Постоянство температуры внутренней среды организма как необходимое условие нормального протекания метаболических процессов. Функциональная система, обеспечивающая поддержание постоянства температуры внутренней среды организма

Температура тела человека и ее суточные колебания. Температура различных участков кожных покровов и внутренних органов

Теплопродукция. Обмен веществ как источник образования тепла. Роль отдельных органов в теплопродукции, регуляция этого процесса

Теплоотдача. Способы отдачи тепла и их регуляция

Выделение как один из компонентов сложных функциональных систем, обеспечивающих постоянство внутренней среды организма. Органы выделения, их участие в поддержании важнейших параметров внутренней среды

Почка. Образование первичной мочи. Фильтр, ее количество и состав

Образование конечной мочи, ее состав и свойства. Характеристика процесса реабсорбции различных веществ в канальцах и петле. Процессы секреции и экскреции в почечных канальцах

Регуляция деятельности почек. Роль нервных и гуморальных факторов

Процесс мочеиспускания, его регуляция. Выведение мочи

Выделительная функция кожи, легких и желудочно-кишечного тракта

Образование и секреция гормонов, их транспорт кровью, действие на клетки и ткани, метаболизм и экскреция. Саморегуляторные механизмы нейрогуморальных отношений и гормонообразовательной функции в организме

Гормоны гипофиза, его функциональные связи с гипоталамусом и участие в регуляции деятельности эндокринных органов

Физиология щитовидной и околощитовидной желез

Эндокринная функция поджелудочной железы и роль ее в регуляции обмена веществ

Физиология надпочечников. Роль гормонов коры и мозгового вещества в регуляции функций организма

Половые железы. Мужские и женские половые гормоны и их физиологическая роль в формировании пола и регуляции процессов размножения. Эндокринная функция плаценты

Роль спинного мозга в процессах регуляции деятельности опорно-двигательного аппарата и вегетативных функций организма. Характеристика спинальных животных. Принципы работы спинного мозга. Клинически важные спинальные рефлексы

Продолговатый мозг и мост, их участие в процессах саморегуляции функций

Физиология среднего мозга, его рефлекторная деятельность и участие в процессах саморегуляции функций

Децеребрационная ригидность и механизмы ее возникновения. Роль среднего и продолговатого мозга в регуляции мышечного тонуса

Статические и статокинетические рефлексы (Р.Магнус). Саморегуляторные механизмы поддержания равновесия тела

Физиология мозжечка, его влияние на моторные и вегетативные функции организма

Ретикулярная формация ствола мозга и ее нисходящее влияние на рефлекторную деятельность спинного мозга. Восходящие активирующие влияния ретикулярной формации ствола мозга на кору больших полушарий. Участие ретикулярной формации

Таламус. Функциональная характеристика и особенности ядерных групп таламуса. Гипоталамус. Характеристика основных ядерных групп. Участие гипоталамуса в регуляции вегетативных функций и в формировании эмоций и мотиваций

Лимбическая система мозга. Ее роль в формировании биологических мотиваций и эмоций

Роль базальных ядер в формировании мышечного тонуса и сложных двигательных актов

Современное представление о локализации функций в коре полушарий большого мозга. Динамическая локализация функций

Учение И.П.Павлова об анализаторах

Рецепторный отдел анализаторов. Классификация, функциональные свойства и особенности рецепторов. Функциональная мобильность (П.Г.Снякин). Проводниковый отдел анализаторов. Особенности проведения афферентных возбуждений

Адаптация анализаторов, ее периферические и центральные механизмы

Характеристика зрительного анализатора. Рецепторный аппарат. Восприятие цвета. Физиологические механизмы аккомодации глаза

Слуховой анализатор. Звукоулавливающие и звукопроводящие аппараты. Рецепторный отдел слухового анализатора. Механизм возникновения рецепторного потенциала в волосковых клетках спирального органа

Роль вестибулярного анализатора в восприятии и оценке положения тела в пространстве и при его перемещении

Двигательный анализатор, его роль в восприятии и оценке положения тела в пространстве и формировании движений

Тактильный анализатор. Классификация тактильных рецепторов, особенности их строения и функций

Роль температурного анализатора в восприятии внешней и внутренней среды организма

Физиологическая характеристика обонятельного анализатора. Классификация запахов, механизм их восприятия

Физиологическая характеристика вкусового анализатора. Механизм генерирования рецепторного потенциала при действии вкусовых раздражителей разной модальности

Роль интероцептивного анализатора в поддержании постоянства внутренней среды организма, его структура. Классификация интероцепторов, особенности их функционирования

Биологическое значение боли. Современное представление о ноцицепции и центральном механизме боли. Антиноцицептивная система. Нейрохимические механизмы антиноцицепции

Методы изучения возбудимости нервов и мышц

Хронаксиметрия

Экспериментальные методы исследования биоэлектрических явлений. Опыты Гальвани

Электромиография

Определение силы мышечного сокращения. Динамометрия

Определение локализации утомления в нервно-мышечном препарате

Методы подсчета эритроцитов и лейкоцитов

Исследование осмотической стойкости эритроцитов

Методы определения количества гемоглобина в крови

Методы определения группы крови

Определение гематокрита

Определение цветового показателя крови

Определение скорости оседания эритроцитов (СОЭ)

Методы определения скорости свертывания крови

Исследование изменения возбудимости сердечной мышцы в различные фазы сердечного цикла

Электрокардиография. Векторкардиография

Методы определения систолического и минутного объемов крови

Аускультация и фонокардиография

Анализ проведения возбуждения по сердцу. Опыт Станниуса

Бескровный метод определения кровяного давления (С.Рива-Роччи, И.С.Короткова). Артериальная осциллография

Методы определения времени полного кругооборота крови

Запись артериального и венного пульса. Анализ сфигмограммы и флебограммы

Определение давления в плевральной полости

Методы определения жизненной емкости легких. Спирометрия, спирография. Пневмография, пневмотахометрия

Определение и сопоставление газового состава вдыхаемого и выдыхаемого альвеолярного воздуха

Оксигемометрия и оксигемография

Методы изучения слюноотделения у животных (И.П.Павлов, Д.Д.Глинский). Методы изучения деятельности слюнных желез у человека. Мастикоциография

Хронические методы изучения секреторной функции желудочных желез у животных

Похожие материалы:

 Перечень экзаменационных практических навыков (раздел «Акушерство и гинекология»)

Сестринское дело в системе медицинской реабилитации больных терапевтического профиля

Определение реабилитации, ее социальное значение. Виды и основные принципы реабилитации. Этапы реабилитации. Организационные основы медицинской реабилитации. Медицинская реабилитация больных с заболеваниями органов дыхания. Медицинская реабилитация больных с заболеваниями сердечно-сосудистой системы, с заболеваниями органов пищеварения, почек.

Штрафы ПДД 2015 Статья КоАП Меры пресечения

Статья КоАП, Нарушение, Меры пресечения, Правил Дорожного Движения Невыполнение водителем обязанностей, предусмотренных Правилами Дорожного Движения, в связи с дорожно-транспортным происшествием, участником которого он является

Порядок прохождения производственной практики студентами в органах Федерального или Муниципального казначейства

Херсонщина – мій рідний край

Херсонщина – мій рідний край Гостинний, та привітний, Якщо приїдете, потрапите у рай, Бо він життям і добротою квітне.