Отжиг первого рода

Территория рекламы

1. Диффузионный (гомогенизирующий) отжиг. Применяется для устранения ликвации, выравнивания химического состава сплава.

В его основе - диффузия. В результате нагрева выравнивается состав, растворяются избыточные карбиды. Применяется, в основном, для легированных сталей.

Температура нагрева зависит от температуры плавления, ТН = 0,8 Тпл.

Продолжительность выдержки: часов.

2. Рекристаллизационный отжиг проводится для снятия напряжений после холодной пластической деформации.

Температура нагрева связана с температурой плавления: ТН = 0,4 Тпл.

Продолжительность зависит от габаритов изделия.

3. Отжиг для снятия напряжений после горячей обработки (литья, сварки, обработки резанием, когда требуется высокая точность размеров).

Температура нагрева выбирается в зависимости от назначения, находится в широком диапазоне: ТН = 160……700oС.

Продолжительность зависит от габаритов изделия.

Детали прецизионных станков (ходовые винты, высоконагруженные зубчатые колеса, червяки) отжигают после основной механической обработки при температуре 570…600°C в течение 2…3 часов, а после окончательной механической обработки, для снятия шлифовочных напряжений - при температуре 160…180°C в течение 2…2,5 часов.

Отжиг второго рода предназначен для изменения фазового состава.

Температура нагрева и время выдержки обеспечивают нужные структурные превращения. Скорость охлаждения должна быть такой, чтобы успели произойти обратные диффузионные фазовые превращения.

Является подготовительной операцией, которой подвергают отливки, поковки, прокат. Отжиг снижает твердость и прочность, улучшает обрабатываемость резанием средне- и высокоуглеродистых сталей. Измельчая зерно, снижая внутренние напряжения и уменьшая структурную неоднородность способствует повышению пластичности и вязкости.

В зависимости от температуры нагрева различают отжиг:

1. полный, с температурой нагрева на 30…50 °C выше критической температуры А3

Проводится для доэвтектоидных сталей для исправления структуры.

При такой температуре нагрева аустенит получается мелкозернистый, и после охлаждения сталь имеет также мелкозернистую структуру.

2. неполный, с температурой нагрева на 30…50°C выше критической температуры А1

Применяется для заэвтектоидных сталей. При таком нагреве в структуре сохраняется цементит вторичный, в результате отжига цементит приобретает сферическую форму (сфероидизация). Получению зернистого цементита способствует предшествующая отжигу горячая пластическая деформация, при которой дробится цементитная сетка.Структура с зернистым цементитом лучше обрабатываются и имеют лучшую структуру после закалки. Неполный отжиг является обязательным для инструментальных сталей.

Иногда неполный отжиг применяют для доэвтектоидных сталей, если не требуется исправление структуры (сталь мелкозернистая), а необходимо только понизить твердость для улучшения обрабатываемости резанием.

3. циклический или маятниковый отжиг применяют, если после проведения неполного отжига цементит остается пластинчатым. В этом случае после нагрева выше температуры А1 следует охлаждение до 680 oС, затем снова нагрев до температуры 750…760) oС и охлаждение. В результате получают зернистый цементит.

4. изотермический отжиг - после нагрева до требуемой температуры, изделие быстро охлаждают до температуры на 50…100°C ниже критической температуры А1 и выдерживают до полного превращения аустенита в перлит, затем охлаждают на спокойном воздухе (рис. 13.5). Температура изотермической выдержки близка к температуре минимальной устойчивости аустенита.

В результате получают более однородную структуру, так как превращение происходит при одинаковой степени переохлаждения. Значительно сокращается длительность процесса. Применяют для легированных сталей.

Рис. 13.5. Режимы изотермического отжига

← Предыдущая
Страница 1
Следующая →

Скачать

Lektsii_po_materialovedeniyu.doc

Lektsii_po_materialovedeniyu.doc
Размер: 1.7 Мб

Бесплатно Скачать

Пожаловаться на материал

Материаловедение. Особенности атомно-кристаллического строения металлов. Кристаллизации металлов. Методы исследования металлов. Общая теория сплавов. Строение, кристаллизация и свойства сплавов. Диаграмма состояния. Диаграммы состояния двухкомпонентных сплавов. Нагрузки, напряжения и деформации. Механические свойства. Механические свойства (продолжение).Технологические и эксплуатационные свойства. Конструкционная прочность материалов. Особенности деформации поликристаллических тел. Наклеп, возврат и рекристаллизация. Железоуглеродистые сплавы. Диаграмма состояния железо-углерод. Стали. Классификация и маркировка сталей. Чугуны. Диаграмма состояния железо-графит. Строение, свойства, классификация и маркировка серых чугунов. Виды термической обработки металлов. Основы теории термической обработки стали. Методы упрочнения металла.

У нас самая большая информационная база в рунете, поэтому Вы всегда можете найти походите запросы

Искать ещё по теме...

Эта тема принадлежит разделу:

Материаловедение

Материаловедение. Особенности атомно-кристаллического строения металлов. Кристаллизации металлов. Методы исследования металлов. Общая теория сплавов. Строение, кристаллизация и свойства сплавов. Диаграмма состояния. Диаграммы состояния двухкомпонентных сплавов. Нагрузки, напряжения и деформации. Механические свойства. Механические свойства (продолжение).Технологические и эксплуатационные свойства. Конструкционная прочность материалов. Особенности деформации поликристаллических тел. Наклеп, возврат и рекристаллизация. Железоуглеродистые сплавы. Диаграмма состояния железо-углерод. Стали. Классификация и маркировка сталей. Чугуны. Диаграмма состояния железо-графит. Строение, свойства, классификация и маркировка серых чугунов. Виды термической обработки металлов. Основы теории термической обработки стали. Методы упрочнения металла.

К данному материалу относятся разделы:

Металлы, особенности атомно-кристаллического строения

Понятие об изотропии и анизотропии

Аллотропия или полиморфные превращения

Магнитные превращения

Строение реальных металлов. Дефекты кристаллического строения

Механизм и закономерности кристаллизации металлов

Условия получения мелкозернистой структуры

Строение металлического слитка

Определение химического состава

Изучение структуры

Физические методы исследования

Понятие о сплавах и методах их получения

Основные понятия в теории сплавов

Особенности строения, кристаллизации и свойств сплавов: механических смесей, твердых растворов, химических соединений

Классификация сплавов твердых растворов

Кристаллизация сплавов

Диаграмма состояния

Диаграмма состояния сплавов с неограниченной растворимостью компонентов в твердом состоянии (сплавы твердые растворы с неограниченной растворимостью)

Диаграмма состояния сплавов с отсутствием растворимости компонентов в компонентов в твердом состоянии (механические смеси)

Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии

Диаграмма состояния сплавов, компоненты которых образуют химические соединения

Диаграмма состояния сплавов, испытывающих фазовые превращения в твердом состоянии (переменная растворимость)

Связь между свойствами сплавов и типом диаграммы состояния

Физическая природа деформации металлов

Природа пластической деформации

Дислокационный механизм пластической деформации

Разрушение металлов

Механические свойства и способы определения их количественных характеристик

Механические свойства и способы определения их количественных характеристик: твердость, вязкость, усталостная прочность

Твердость по Бринеллю ( ГОСТ 9012)

Метод Роквелла ГОСТ 9013

Метод Виккерса

Метод царапания

Динамический метод (по Шору)

Влияние температуры

Способы оценки вязкости

Оценка вязкости по виду излома

Эксплуатационные свойства

Конструкционная прочность материалов

Особенности деформации поликристаллических тел

Влияние пластической деформации на структуру и свойства металла: наклеп

Влияние нагрева на структуру и свойства деформированного металла: возврат и рекристаллизация

Структуры железоуглеродистых сплавов

Компоненты и фазы железоуглеродистых сплавов

Процессы при структурообразовании железоуглеродистых сплавов

Структуры железоуглеродистых сплавов

Влияние углерода

Влияние примесей

Назначение легирующих элементов

Распределение легирующих элементов в стали

Классификация и маркировка сталей

Качественные углеродистые стали

Сталь У10А

Легированные конструкционные стали

Легированные инструментальные стали

Быстрорежущие инструментальные стали

Шарикоподшипниковые стали

Классификация чугунов

Диаграмма состояния железо – графит

Процесс графитизации

Строение, свойства, классификация и маркировка серых чугунов

Влияние состава чугуна на процесс графитизации

Влияние графита на механические свойства отливок

Положительные стороны наличия графита

Серый чугун

Высокопрочный чугун с шаровидным графитом

Ковкий чугун

Отбеленные и другие чугуны

Виды термической обработки металлов

Превращения, протекающие в структуре стали при нагреве и охлаждении

Превращение перлита в аустетит

Превращение аустенита в перлит при медленном охлаждении

Закономерности превращения

Промежуточное превращение

Превращение аустенита в мартенсит при высоких скоростях охлаждения

Превращение мартенсита в перлит

Отжиг и нормализация. Назначение и режимы

Отжиг первого рода

Нормализация. Разновидность отжига

Технологические особенности и возможности закалки и отпуска

Химико-термическая обработка стали

Цементация

Цементация в твердом карбюризаторе

Газовая цементация

Структура цементованного слоя

Термическая обработка после цементации

Азотирование

Цианирование и нитроцементация

Диффузионная металлизвция

Термомеханическая обработка стали

Поверхностное упрочнение стальных деталей

Закалка токами высокой частоты

Газопламенная закалка

Старение

Обработка стали холодом

Упрочнение методом пластической деформации

Конструкционные стали

Легированные стали

Влияние элементов на полиморфизм железа

Влияние легирующих элементов на превращение перлита в аустенит

Влияние легирующих элементов на превращение переохлажденного аустенита

Влияние легирующих элементов на мартенситное превращение

Влияние легирующих элементов на превращения при отпуске

Классификация легированных сталей

Классификация конструкционных сталей

Углеродистые стали

Цементуемые стали

Улучшаемые стали

Улучшаемые легированные стали

Высокопрочные стали

Пружинные стали

Шарикоподшипниковые стали

Стали для изделий, работающих при низких температурах

Износостойкие стали

Автоматные стали

Стали для режущего инструмента

Углеродистые инструментальные стали (ГОСТ 1435)

Легированные инструментальные стали

Быстрорежущие стали

Стали для измерительных инструментов

Штамповые стали

Стали для штампов холодного деформирования

Стали для штампов горячего деформирования

Твердые сплавы

Алмаз как материал для изготовления инструментов

Коррозия электрохимическая и химическая

Классификация коррозионно-стойких сталей и сплавов

Хромистые стали

Жаростойкость, жаростойкие стали и сплавы

Жаропрочность, жаропрочные стали и сплавы

Классификация жаропрочных сталей и сплавов

Медь и ее сплавы

Титан и его сплавы

Области применения титановых сплавов

Алюминий и его сплавы

Алюминиевые сплавы

Деформируемые сплавы, не упрочняемые термической обработкой

Деформируемые сплавы, упрочняемые термической обработкой

Литейные алюминиевые сплавы

Магний и его сплавы

Деформируемые магниевые сплавы

Литейные магниевые сплавы

Медь и ее сплавы

Латуни

Бронзы

Композиционные материалы

Материалы порошковой металлургии

Пористые порошковые материалы

Прочие пористые изделия

Конструкционные порошковые материалы

Спеченные цветные металлы

Электротехнические порошковые материалы

Магнитные порошковые материалы

Похожие материалы:

Информационный менеджмент. Задачи информационного менеджмента

Информационный менеджмент — это специальная область менеджмента, выделившаяся как самостоятельное направление в конце 70-х гг. XX века, специализирующаяся на сборе, управлении и распределении информации.

вопросы и ответы по Истории

Одноэлектронный транзистор. Устройство

Одноэлектронный транзистор - транзистор, в основе концепции которого лежит возможность получения заметных изменений напряжения при манипуляции с отдельными электронами. Аналогично полевому полупроводниковому транзистору, одноэлектронный транзистор имеет три электрода: исток, сток и затвор.

Безопасность и экологичность проекта ПБО “Блинная”

В этом разделе проведена оценка разработанного проекта с точки зрения его безопасности и экологичности. Оценка безопасности означает перечисление опасных и вредных факторов, возможных на различных участках производства и технических, организационных и т.д. решений, предусмотренных проектом для уменьшения их воздействия на человека.

Экзаменационные вопросы по дисциплине «Молекулярная физика и термодинамика»