Проектирование монолитного ребристого перекрытия

Проектирование монолитного ребристого перекрытия.

Компоновка конструктивной схемы монолитного перекрытия

В монолитном ребристом перекрытии принимаем поперечное расположение главных балок по внутренним разбивочным осям. Второстепенный балки размещаются в продольном направлении здания по осям колонн и в третях пролета главных балок с шагом L/4=22,4/4=5,6м (принимаем шаг крайних балок 2,0+2*1,8 м) так, чтобы соотношение пролетов плиты перекрытия было больше двух. Плита в этом случае рассчитывается как балочная в направлении короткого пролета.

Задаемся предварительно размерами сечений:

-плиты:

hs=Lпл30=20030=6,7≈7 см

-второстепенная балка:

hsb=B16=61016=38,125≈40 см и bsb=0,5hsb=0,5∙40=20 см

-главной балки:

hmb=L11=56011=50,9 см принимаем 60 см и bmb=0,5∙hmb=0,5∙60=30 см

Данные для проектирования

Материалы для перекрытия:

Бетон тяжелый класса по прочности на сжатие В15:

-нормативное сопротивление бетона и расчетное сопротивление бетона осевому сжатию для предельных состояний второй группы

- расчетное сопротивление бетона осевому растяжению для предельных состояний первой группы

Коэффициент условия работы бетона

Начальный модуль упругости бетона

Арматура:

-для армирования плит – проволока класса В500с диаметром 3-5 мм,

-для армирования второстепенных балок – продольная рабочая арматура класса А400, ;

-поперечная класса А240, ;

-арматура сеток В500.

Расчет и конструирование плиты

Для крайних пролетов:

-крайние пролеты

l01=ls-bsb2-δ+С2=1,8-0,22+0,122=1,64 м

Для средних пролетов:

l02=ls-bsb=2,0-0,2=1,8 м

-вдоль второстепенных балок

ls4=B-bmb=6,1-0,3=5,8 м

Расчет балочной плиты, загруженной распределенной нагрузкой, производится как многопролетной

неразрезной балки с условной шириной 100см

Нагрузки на 1перекрытия

Вид нагрузки

Нормативная нагрузка, кН/м2

Коэффициент надежности по нагрузке γf

Расчетная нагрузка, кН/м2

1

2

3

4

Постоянная:

Ламинат, δ=10 мм

Древ.волокн. плита δ=15 мм

Цементно-песчаная стяжка, δ=45 мм

Монолитная ж/б плита =70 мм QUOTE δ=10 мм

0,075

0,09

0,81

1,75

1,3

1,3

1,3

1,1

0,0975

0,117

1,053

1,925

Итого постоянная нагрузка g

2,725

3,193

Временная:

Временная нагрузка

4,2

1,2

5,04

Перегородки, включая временные

1,75

1,2

2,1

Полная нагрузка (постоянная + временная):

Итого (g+v):

8,675

10,33

Нагрузка на 1 погонный метр длины плиты при условной ее ширине 1,0м с учетом коэффициента надежности по ответственности здания :

- постоянная g=3,193∙1,0∙1=3,193 кН/м

-временная полезная p=7,14∙1,0∙1=7,14кН/м

-полная нормативная q=g+p=3,193+7,14=10,33 кН/м

Определение усилий в плите от внешней нагрузки

Расчетные усилие в плите определяются с учетом их перераспределения вследствии пластических деформаций.

Расчетный изгибающий момент :

В первом пролете и на первой промежуточной опоре

M1=q∙l01211=10,33∙1,64211=2,53 кН∙м

В средних пролетах и на средних опорах

M2=q∙l02216=10,33∙1,8216=2,092 кН∙м

Определим требуемую площадь сечения рабочей продольной арматуры:

h0=hs-a2=7-1,5=5,5 см

В первом пролете и на первой промежуточной опоре полосы А:

αm=M1γb1∙Rb∙b∙h02=2,53∙1021,0∙8,5∙10-1∙100∙5,52=0,098

Находим: ζ=0,947,ξ=0,106<ξR=0,502 следовательно сечение не переармировано

As1,A=М1Rs∙ζ∙h0=2,53∙102415∙10-1∙0,947∙5,5=1,17 см2/м

В средних пролетах и на средних опорах полосы А(моменты снижены на 20 % из-за учета возникающего распора при заделки плиты по контуру):

αm=0,8∙M2γb1∙Rb∙b∙h02=0,8∙2,092∙1021,0∙8,5∙10-1∙100∙5,52=0,065

Находим: ζ=0,967,ξ=0,068<ξR=0,502 следовательно сечение не переармировано

As2,A=0,8∙M2Rs∙ζ∙h0=0,8∙2,092∙102415∙10-1∙0,967∙5,5=0,76 см2/м

Расчет плиты, расположенной у торцов здания (полосы «Б»)

В первой пролете и на первой промежуточной опоре полосы «Б»:

As1,Б=As1,A=1,17 см2/м

В средних пролетах и на средних опорах полосы Б

αm=M2γb1∙Rb∙b∙h02=2,092∙1021,0∙8,5∙10-1∙100∙5,52=0,081

Находим: ζ=0,958,ξ=0,085<ξR=0,502 следовательно сечение не переармировано

As2,Б=M2Rs∙ζ∙h0=2,092∙102415∙10-1∙0,958∙5,5=0,96 см2/м

Сечение плиты

As, по расчету

Asc, по факту

ΣAsc, по факту

Принятая марка стандартной сетки

Полоса «А»

В средних пролетах и на средних опорах плиты

0,76

0,982

0,982

С15В500-2005В500-1503260×22500с130

В крайних пролетах и на первой промежуточной опоре

1,17

0,982

0,4

1,382

С15В500-2005В500-1503260×22500с130

С34В500-3005В500-1503260×2400с130

Полоса «Б»

В средних пролетах и на средних опорах плиты

0,96

0,982

0,982

С25В500-2005В500-1503260×16800с130

В крайних пролетах и на первой промежуточной опоре

1,17

0,982

0,4

1,382

С25В500-2005В500-1503260×16800с130

С34В500-3005В500-1503260×2400с130

Определение расчетных пролетов второстепенной балки.

Расчетные пролеты :

- крайние

l03=B-bm.b2-δ+cs.b2=6,1-0,32-0+0,252=6,075 м

- средние

l04=B-bm.b=6,1-0,3=5,8 м

Пролеты не должны отличаться более чем на 20 %

l03-l04l04100%=6,075-5,86,075100%=4,53 %<20 %

Усилия во второстепенной балке.

Расчетные погонные нагрузки на второстепенную балку

Постоянная нагрузка

g=g∙Bsb+bsbhsb-hf'∙25∙γf

g=3,193∙1,9+0,2∙0,33∙25∙1,1=7,88 кНм

Временная полезная нагрузка

p=p∙Bsb

p=7,14∙1,9=13,566кНм

Полная

q=g+p=7,88+13,566=21,446 кНм

q1=g+p2=7,88+13,5662=14,663 кНм

Изгибающие моменты с учетом перераспределения внутренних усилий :

- в первом пролете

M1=q∙l03211=21,446∙6,075211=71,95 кН∙м

- на первой промежуточной опоре В

MВ=q∙l03+l04214∙4=21,446∙6,075+5,8214∙4=54,0 кН∙м

- в средних пролетах и на средних опорах C, D

M2=q∙l04216=21,446∙5,8216=45,09 кН∙м

Поперечные силы

- на крайней опоре А :

QA=0,4∙q∙l03=0,4∙21,446∙6,075=52,11 кН

- на первой промежуточной опоре В слева :

Qвл=0,6∙q∙l03=0,6∙21,446∙6,075=78,17 кН

- на первой промежуточной опоре В слева справа и на средних опорах C, D :

Qвпр=QСл=QСпр=QDл=0,5∙q∙l04=0,5∙21,446∙5,8=62,19 кН

Высота сечения второстепенной балки

Для обеспечения перераспределения усилий принимаем ξ=0,35 ,αm=0,289. В качетсве расчетного принимаем опорное сечение с наибольшим по модулю моментом MВ=54,0 кН∙м :

hsb=40 см

Следовательно, h0=hsb-a=40-4=36 см

Проверяем достаточность высоты сечения балки для обеспечения сопротивления действию главных сжимающих усилий :

Q≤φb1γb1Rbbh0

где Q – максимальное значение поперечной силы в нормальном сечении элемента ;

φb1- коэффициент, принимаемый равным 0,3

QBл=78,17 кН <0,3∙1,0∙8,5∙10-1∙20∙36=183,6 кН

Условие выполняется. Следовательно, нет опасности раздробления бетона в наклонных сечениях. Окончательно принимаем высоту второстепенной балки hsb=40 см.

Расчет прочности по нормальным сечениям

Сечение в первом пролете

Рабочая высота сечения :

h0=hsb-a=40-4=36 см

При определении площади сечения пролетной арматуры по положительным изгибающим моментам сечение балки рассчитываем как тавровое с полкой в сжатой зоне hf'=7 см.

Значение bf' принимается из условия, что ширина свеса полки в каждую сторону от ребра должна быть не более1/6 пролета элемента, а при hf=7 см≥0,1∙40=4,0 см принимается равной не более ½ расстояния в свету между ребрами :

bf'=61006∙2+200=2240 мм

bf'=18002∙2+200=2000 мм

Принимаем меньшее из вычисленных значений, то есть bf'=2000 мм.

Таким образом, второстепенную балку рассчитываем как многопролетную неразрезную балку таврового сечения с шириной полки, равной 200 см

Граница сжатой зоны проходит в полке, если соблюдается условие :

M≤Mf

Mf=γb1∙Rb∙bf'∙hf'∙h0-0,5hf'=1,0∙8,5∙10-1∙200∙7∙36-0,5∙7=38675 кН∙см=386,75 кН∙м

M1=71,95 кН∙м< Mf= 386,75 кН∙м

Условие выполняется, следовательно, нижняя граница сжатой зоны проходит в полке.

Вычисляем коэффициент αm=M1γb1∙Rb∙bf'∙h02=71,95∙1021,0∙8,5∙10-1∙200∙362=0,033.

ζ=0,983, ξ=0,033 . Для арматуры класса А400 находим ξR=0,531 αR=0,390 .

ξ=0,033<ξR=0,531

так как αm=0,033<αR=0,390 , постановка сжатой арматуры не требуется.

As=M1Rs∙ζ∙h0=71,95∙102355∙10-1∙0,983∙36=5,73 см2

По сортаменту принимаем 2∅20 А400 с Asфакт=6,28 см2

Сечение в среднем пролете

Рабочая высота сечения :

h0=hsb-a=40-4=36 см

Проверяем выполнение условия :

M≤Mf

Mf=γb1∙Rb∙bf'∙hf'∙h0-0,5hf'=1,0∙8,5∙10-1∙200∙7∙36-0,5∙7=38675 кН∙см=386,75 кН∙м

M2=45,09 кН∙м< Mf= 386,75 5 кН∙м

Условие выполняется. Следовательно, нижняя граница сжатой зоны проходит в полке, и сечение рассчитываем как прямоугольное с bf=200 см.

αm=M2γb1∙Rb∙bf∙h02=45,09∙1021,0∙8,5∙10-1∙200∙362=0,02.

Следовательно ζ=0,990, ξ=0,02.

ξ=0,02<ξR=0,531.

Так как αm=0,02<αR=0,390, постановка сжатой арматуры не требуется.

As=M2Rs∙ζ∙h0=45,09∙102355∙10-1∙0,990∙36=3,56 см2

По сортаменту принимаем 2∅16 А400 с Asфакт=4,02 см2

На отрицательные пролетные и опорные изгибающие моменты сечения балки работают с полкой в растянутой зоне. Эти сечения рассчитывают как прямоугольное с шириной bsb=20 см.

Сечение у первой промежуточной опоры.

Рабочая высота сечения :

h0=hsb-a=40-4=36 см

αm=MВγb1∙Rb∙bf∙h02=54,0∙1021,0∙8,5∙10-1∙200∙362=0,0245

Следовательно ζ=0,988 ξ=0,0245.

As=MВRs∙ζ∙h0=54,0∙102355∙10-1∙0,988∙36=4,28 см2

Сечение армируем сварными рулонными сетками с поперечной арматурой, раскатываемыми вдоль главных балок. Площадь арматуры на 1 пог. м. одной сетки должна составлять As2∙bf'=4,282∙2,0=1,07 см2/м.

Принимаем 2 сетки С4 6А400-1506А400-250 3260×22500с130 с площадью поперечной арматуры 1,12 см2/м, что больше требуемой по расчету 1,07 см2/м. Ширина сетки 3260 мм.

Сечение над средними опорами

Рабочая высота сечения :

h0=hsb-a=40-4=36 см

αm=M2γb1∙Rb∙bsb∙h02=45,09∙1021,0∙8,5∙10-1∙20∙362=0,204

Следовательно ζ=0,885 ξ=0,204.

As=M2Rs∙ζ∙h0=45,09∙102355∙10-1∙0,885∙36=3,97 см2

Сечение армируем сварными рулонными сетками с поперечной арматурой, раскатываемыми вдоль главных балок. Площадь арматуры на 1 пог. м. одной сетки должна составлять As2∙bf'=3,972∙2,0=0,993 см2/м.

Принимаем 2 сетки С4 6А400-1506А400-250 3260×22500с130 с площадью поперечной арматуры 1,12 см2/м, что больше требуемой по расчету 0,993 см2/м. Ширина сетки 3260 мм.

Результаты расчета площадей рабочей арматуры заносим в таблицу

Сечение второстепенной балки

As, по расчету

As, по факту

Asфакт-AsтрAsтр∙100 %

Принятая арматура

1

2

3

4

5

В крайних пролетах

5,73

6,28

9,6

2∅20 А400

Над первой промежуточной опорой

1,07

1,12

4,7

С4 6А400-1506А400-250 3260×22500с130

В средних пролетах

3,56

4,02

12,9

2∅16 А400

Над средними опорами

0,993

1,12

12,8

С4 6А400-1506А400-250 3260×22500с130

Расчет прочности по наклонным сечениям.

Диаметр хомутов из условий сварки не должен быть меньше 0,25ds(0,25∙14≈4 мм), то сеть четверти диаметра рабочей арматуры и не менее 6 мм.

Принимаем арматуру класса А240 : , dsw=6 мм с Asw=0,283 см2.

Шаг хомутов на припорных участках длиной ¼ длины балки в соответствии с конструктивными требованиями не должен превышать 0,5∙h0=0,5∙33=17 см и быть не более 30 см.

Шаг хомутов не должен быть также более Sw.max=γb1∙Rbt∙b∙h02Q=1,0∙0,75∙10-1∙20∙33278,17=20,9 см

Где Q=QBл=78,17 кН – максимальное значение поперечной силы.

Принимаем шаг хомутов sw=15 см.

Производим расчет по наклонному сечению при армировании 2-х срезными хомутами dsw=6 мм, установленных с шагом 150 мм .

Проверяем прочность бетона между наклонными трещинами от главных сжимающих напряжений

Qmax≤0,3∙Rb∙b∙h0

Qmax=78,17<0,3∙1,0∙8,5∙10-1∙20∙36=183,6 кН.

Условие выполняется, то есть прочность бетонной полосы обеспечена.

Постановка поперечной арматуры по расчету не требуется, если соблюдается условие :

Qmin≤Qb,min=0,5Rbt∙b∙h0

Qmin=52,11 кН>Qb,min=0,5∙1,0∙0,75∙10-1∙20∙36=27 кН

Условие не соблюдается, следовательно требуется постановка поперечной рабочей арматуры.

Погонное усилие, воспринимаемое хомутами при двух плоских каркасах (число срезов n=2) равно

qsw=Rsw∙Asw∙nSsw=170∙10-1∙0,283∙215=0,641 кН/см

Поперечную арматуру учитывают в расчете полностью, если соблюдается условие

qsw≥0,25Rbt∙b

0,641 кНсм≥ 0,25 ∙1,0∙0,75∙10-1∙20=0,375 кНсм

Условие выполняется. Следовательно, поперечную арматуру(хомуты) учитываем в расчете полностью и значение Mb определяем по формуле :

Mb =1,5Rbt∙b∙h02=1,5∙1,0∙0,75∙10-1∙20∙362=2916 кН∙см=29,16 кН∙м.

Длина проекции наклонного сечения определяется при нагрузке

q1=q-p2=21,446-13,5662=14,663 кН/м

Длина проекции невыгоднейшего наклонного сечения определяем по формуле

c=Mbq1=29,16∙10214,663∙10-2=141,02 см

Если при этом выполняется условие

c=Mbq1≥2∙h01-0,5∙qswγb1∙Rbt∙b

То длину проекции невыгоднейшего наклонного сечения принимают

c=Mbq1

Так как

c=Mbq1=141,02 см≥2∙361-0,5∙0,6411,0∙0,75∙10-1∙20=91,6 см

принимаем длину проекции невыгоднейшего наклонного сечения

c=Mbq1=29,16∙10214,663∙10-2=141,02 см

Тогда поперечная сила, воспринимаемая бетоном

Qb=Mbc=29,16∙102141,02=20,7 кН

При этом должны выполняться условия

0,5Rbt∙b∙h0≤Qb≤2,5Rbt∙b∙h0

29,16 кН≤Qb=20,7 кН≤135 кН

Так как Qb оказалась меньше минимального значения, для дальнейшего расчета принимаем Qb=29,16 кН

Поперечная сила, воспринимаемая хомутами

Qsw=0,75∙qsw∙c0 ,

где c0=с, если с≤2h0 , в противном случае c0=2h0.

Так как с=141,02 см >2h0=2∙36=72 см, принимаем c0=с=72 см.

Qsw=0,75∙qsw∙c0=0,75∙0,641∙72=34,61 кН.

Q=Qmax-q1c=78,17-14,663∙10-2∙72=67,61 кН.

Проверяем условие

Q≤ Qb+ Qsw

Q=67,61 кН>29,16+34,61=63,77 кН

Условие не соблюдается, прочность по наклонному сечению не обеспечена.

Для обеспечения прочности по наклонному сечению необходимо увеличить диаметр хомутов, уменьшить их шаг, повысить класс бетона на сжатие.

Принимаем хомуты dsw=10 мм с Asw=0,785 см2, с шагом sw=150 мм.

Проверяем прочность бетона между наклонными трещинами от главных сжимающих напряжений

Qmax≤ 0,3Rb∙b∙h0

Qmax=78,17<0,3∙1,0∙8,5∙10-1∙20∙36=183,6 кН.

Условие выполняется, то есть прочность бетонной полосы обеспечена.

Постановка поперечной арматуры по расчету не требуется, если соблюдается условие :

Qmin≤Qb,min=0,5Rbt∙b∙h0

Qmin=52,11 кН>Qb,min=0,5∙1,0∙0,75∙10-1∙20∙36=27 кН

Условие не соблюдается, следовательно требуется постановка поперечной рабочей арматуры.

Погонное усилие, воспринимаемое хомутами при двух каркасах(число срезов n=2) равно

qsw=Rsw∙Asw∙nSsw=170∙10-1∙0,785∙215=1,78 кН/см

Поперечную арматуру учитывают в расчете полностью, если соблюдается условие

qsw≥0,25Rbt∙b

1,78 кНсм≥ 0,25 ∙1,0∙0,75∙10-1∙20=0,375 кНсм

Условие выполняется. Следовательно, поперечную арматуру(хомуты) учитываем в расчете полностью и значение Mb определяем по формуле :

Mb =1,5Rbt∙b∙h02=1,5∙1,0∙0,75∙10-1∙20∙362=2916 кН∙см=29,16 кН∙м.

Длина проекции наклонного сечения определяется при нагрузке

q1=q-p2=21,446-13,5662=14,663 кН/м

Длина проекции невыгоднейшего наклонного сечения определяем по формуле

c=Mbq1=29,16∙10214,663∙10-2=141,02 см

Если при этом выполняется условие

c=Mbq1≥2∙h01-0,5∙qswγb1∙Rbt∙b

То длину проекции невыгоднейшего наклонного сечения принимают

c=Mbq1

Так как

c=Mbq1=141,02 см≥2∙361-0,5∙1,781,0∙0,75∙10-1∙20=177,1 см

принимаем длину проекции невыгоднейшего наклонного сечения

c=Mb0,75qsw+q1=29,16∙1020,75∙1,78+14,663∙10-2=44,36 см

Тогда поперечная сила, воспринимаемая бетоном

Qb=Mbc=29,16∙10244,36=65,73 кН

При этом должны выполняться условия

0,5Rbt∙b∙h0≤Qb≤2,5Rbt∙b∙h0

27 кН≤Qb=65,73 кН≤135 кН

Поперечная сила, воспринимаемая хомутами

Qsw=0,75∙qsw∙c0 ,

где c0=с, если с≤2h0 , в противном случае c0=2h0.

Так как с=44,36 см <2h0=2∙36=72 см, принимаем c0=с=44,36 см.

Qsw=0,75∙qsw∙c0=0,75∙1,78∙44,36=59,22 кН.

Q=Qmax-q1c=78,17-14,663∙10-2∙44,36=71,67 кН.

Проверяем условие

Q≤ Qb+ Qsw

Q=71,67 кН<65,73+59,22=124,95 кН

Прочность по наклонному сечению обеспечена.

Проверяем требования, предъявляемые к шагу хомутов sw :

sw≤ smax

sw=150 мм≤ smax=γb1∙Rbt∙b∙h02Qmax=1,0∙0,75∙10-1∙20∙36278,17=24,87 см=249 мм

То есть, требование выполнено.

sw≤ h0/2

sw=150 мм <3602=180 мм

Требование выполнено

3) sw≤300 мм

sw=150 мм <300 мм

Требование выполнено.

Окончательно принимаем в припорной зоне, равной четверти пролета балки двухсрезные хомуты из арматуры класса А240 диаметром 10 мм с шагом 150 мм. На стальной части балки принимаем хомуты с шагом 0,75h0=0,75∙36=27 см~30см=300 мм<500 мм.

← Предыдущая
Страница 1
Следующая →

Компоновка конструктивной схемы монолитного перекрытия. Расчет и конструирование плиты. Определение усилий в плите от внешней нагрузки. Расчет прочности по нормальным сечениям

У нас самая большая информационная база в рунете, поэтому Вы всегда можете найти походите запросы

Искать ещё по теме...

Похожие материалы:

Пестициды

Ядохимикаты. Пестициды - химические вещества. Классификация пестицидов в зависимости от химического состава; в зависимости от путей поступления в организм насекомых; от характера их действия. Химическая классификация. Химико-токсикологическое значение хлорорганических пестицидов. Химико-токсикологическое значение фосфорсодержащих пестицидов

Направленность личности

Современные методы социального управления

Модель группового (бригадного) самоуправления. Модель «ответственного автономного поведения». Персонализация труда. Гибкий график рабочего дня

Политика. Основные политические режимы

Политика как общественное явление 2. Понятие и типы политической системы 3. Основные политические режимы  

Теория государства и права

Ответы по Теория государства и права (ТГП). Предмет и методология. Общая характеристика. Тип государства, государственное устройство. Классификация.

Сохранить?

Пропустить...

Введите код

Ok